Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2403158, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837611

ABSTRACT

This work highlights the development of a superior cathode|electrolyte interface for the quasi solid-state rechargeable zinc metal battery (QSS-RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light-assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn-MnO electrode complements the interface formation during the in situ polymerization process. The QSS-RZMB configured with an integrated cathode (i-Zn-MnO) and the hydrogel polymer electrolyte (PHPZ-30) as the separator yields a comparable specific energy density of 214.14 Wh kg-1 with that of its liquid counterpart (240.38 Wh kg-1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS-RZMB system include its superior cycle life of over 1000 charge-discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g-1, compared to only 60% capacity retention over 500 charge-discharge cycles displayed by the liquid-state system under the same operating conditions.

2.
Nat Commun ; 15(1): 1278, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341406

ABSTRACT

Considering the importance of sustainable nuclear energy, effective management of radioactive nuclear waste, such as sequestration of radioiodine has inflicted a significant research attention in recent years. Despite the fact that materials have been reported for the adsorption of iodine, development of effective adsorbent with significantly improved segregation properties for widespread practical applications still remain exceedingly difficult due to lack of proper design strategies. Herein, utilizing unique hybridization synthetic strategy, a composite crystalline aerogel material has been fabricated by covalent stepping of an amino-functionalized stable cationic discrete metal-organic polyhedra with dual-pore containing imine-functionalized covalent organic framework. The ultralight hybrid composite exhibits large surface area with hierarchical macro-micro porosity and multifunctional binding sites, which collectively interact with iodine. The developed nano-adsorbent demonstrate ultrahigh vapor and aqueous-phase iodine adsorption capacities of 9.98 g.g-1 and 4.74 g.g-1, respectively, in static conditions with fast adsorption kinetics, high retention efficiency, reusability and recovery.

3.
Small ; 19(50): e2304143, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37612811

ABSTRACT

The rational design of noble metal-free electrocatalysts holds great promise for cost-effective green hydrogen generation through water electrolysis. In this context, here, the development of a superhydrophilic bifunctional electrocatalyst that facilitates both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline conditions is demonstrated. This is achieved through the in situ growth of hierarchical NiMoO4 @CoMoO4 ·xH2 O nanostructure on nickel foam (NF) via a two-step hydrothermal synthesis method. NiMoO4 @CoMoO4 ·xH2 O/NF facilitates OER and HER at the overpotentials of 180 and 220 mV, respectively, at the current density of 10 mA cm-2 . The NiMoO4 @CoMoO4 ·xH2 O/NF ǁ NiMoO4 @CoMoO4 ·xH2 O/NF cell can be operated at a potential of 1.60 V compared to 1.63 V displayed by the system based on the Pt/C@NFǁRuO2 @NF standard electrode pair configuration at 10 mA cm-2 for overall water splitting. The density functional theory calculations for the OER process elucidate that the lowest ΔG of NiMoO4 @CoMoO4 compared to both Ni and NiMoO4 is due to the presence of Co in the OER catalytic site and its synergistic interaction with NiMoO4 . The preparative strategy and mechanistic understanding make the windows open for the large-scale production of the robust and less expensive electrode material for the overall water electrolysis.

4.
Chemistry ; 26(35): 7900-7911, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32363666

ABSTRACT

Hydrogen production is vital for meeting future energy demands and managing environmental sustainability. Electrolysis of water is considered as the suitable method for H2 generation in a carbon-free pathway. Herein, the synthesis of highly efficient Co9 S8 -Ni3 S2 based hierarchical nanoflower arrays on nickel foam (NF) is explored through the one-pot hydrothermal method (Co9 S8 -Ni3 S2 /NF) for overall water splitting applications. The nanoflower arrays are self-supported on the NF without any binder, possessing the required porosity and structural characteristics. The obtained Co9 S8 -Ni3 S2 /NF displays high hydrogen evolution reaction (HER), as well as oxygen evolution reaction (OER), activities in 1 m KOH solution. The overpotentials exhibited by this system at 25 mA cm-2 are nearly 277 and 102 mV for HER and OER, respectively, in 1 m KOH solution. Subsequently, the overall water splitting was performed in 1 m KOH solution by employing Co9 S8 -Ni3 S2 /NF as both the anode and cathode, where the system required only 1.49, 1.60, and 1.69 V to deliver the current densities of 10, 25, and 50 mA cm-2 , respectively. Comparison of the activity of Co9 S8 -Ni3 S2 /NF with the state-of-the-art Pt/C and RuO2 coated on NF displays an enhanced performance for Co9 S8 -Ni3 S2 /NF both in the half-cell as well as in the full cell, emphasizing the significance of the present work. The post analysis of the material after water electrolysis confirms that the surface Co(OH)2 formed during the course of the reaction serves as the favorable active sites. Overall, the activity modulation achieved in the present case is attributed to the presence of the open-pore morphology of the as formed nanoflowers of Co9 S8 -Ni3 S2 on NF and the simultaneous presence of the surface Co(OH)2 along with the highly conducting Co9 S8 -Ni3 S2 core, which facilitates the adsorption of the reactants and subsequently its conversion into the gaseous products during water electrolysis.

5.
J Am Chem Soc ; 142(18): 8252-8261, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32279483

ABSTRACT

The induction of macro and mesopores into two-dimensional porous covalent organic frameworks (COFs) could enhance the exposure of the intrinsic micropores toward the pollutant environment, thereby, improving the performance. However, the challenge is to build a continuous hierarchically porous macro-architecture of crystalline organic materials in the bulk scale. In this regard, we have strategized a novel synthetic method to create hierarchically porous COF foams consisting of ordered micropores (2-2.2 nm) and disordered meso and macropores (50 nm to 200 µm) as well as ordered macropores (1.5 mm to 2 cm). Herein, graphene oxide was used for creating disordered macro and mesopores in COF-GO foams. Considering the rheological features of the precursor hydrogel, we could integrate crystalline and porous COF-GO foams into self-supported three-dimensional (3D)-printed objects with the desired shapes and sizes. Therefore, we have engineered the 3D macro-architecture of COF-GO foams into complex geometries keeping their structural order and continuous porosity intact over a range of more than a million (10-9 m to 10-3 m). The interconnected 3D openings in these COF-GO foams further enhance the rapid and efficient uptake of organic and inorganic pollutants from water (>95% removal within 30 s). The abundant distribution of interconnected macroporous volume (55%) throughout the COF-GO foam matrix enhances the flow of water (1.13 × 10-3 m·s-1) which results in efficient mass transport and adsorption.

6.
J Am Chem Soc ; 141(18): 7572-7581, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31017396

ABSTRACT

The key factor responsible for fast diffusion and mass transfer through a porous material is the availability of a widely open pore interior having complete accessibility from their surface. However, because of their highly stacked nature, ordered two-dimensional (2D) materials fail to find real-world applicability, as it is difficult to take advantage of their complete structure, especially the inner cores. In this regard, three-dimensional (3D) nanostructures constructed from layered two-dimensional crystallites could prove to be advantageous. However, the real challenge is to cultivate a porous nanostructure with ordered pores where the pores are surrounded by crystalline walls. Herein, a simple yet versatile in situ gas-phase foaming technique has been employed to address these cardinal issues. The use of baking soda leads to the continuous effervescence of CO2 during the crystallization of foam, which creates ripples and fluctuations on the surface of the 2D crystallites. The induction of ordered micropores within the disordered 3D architecture synergistically renders fast diffusion of various guests through the interconnected pore network. The high-density defects in the hierarchically porous structure help in ultrafast adsorption (<10 s) of various pollutants (removal efficiency of 99%) from water, all of which would lead to significant environmental benefit. The pseudo-second-order rate constant for the BPA pollutant is 182.3 g mg-1 min-1, which is the highest among all the literature reports to date. The high removal efficiency (highest efficiency of 94% and average efficiency of 70%) of a persistent organic pollutant has been attended for the first time.


Subject(s)
Metal-Organic Frameworks/chemistry , Nanostructures/chemistry , Water Pollutants, Chemical/isolation & purification , Adsorption , Microscopy, Confocal , Molecular Structure , Particle Size , Porosity , Surface Properties , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...