Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Psychiatry ; 22(11): 1585-1593, 2017 11.
Article in English | MEDLINE | ID: mdl-28167837

ABSTRACT

Schizophrenia is associated with cognitive deficits that reflect impaired cortical information processing. Mismatch negativity (MMN) indexes pre-attentive information processing dysfunction at the level of primary auditory cortex. This study investigates mechanisms underlying MMN impairments in schizophrenia using event-related potential, event-related spectral decomposition (ERSP) and resting state functional connectivity (rsfcMRI) approaches. For this study, MMN data to frequency, intensity and duration-deviants were analyzed from 69 schizophrenia patients and 38 healthy controls. rsfcMRI was obtained from a subsample of 38 patients and 23 controls. As expected, schizophrenia patients showed highly significant, large effect size (P=0.0004, d=1.0) deficits in MMN generation across deviant types. In ERSP analyses, responses to deviants occurred primarily the theta (4-7 Hz) frequency range consistent with distributed corticocortical processing, whereas responses to standards occurred primarily in alpha (8-12 Hz) range consistent with known frequencies of thalamocortical activation. Independent deficits in schizophrenia were observed in both the theta response to deviants (P=0.021) and the alpha-response to standards (P=0.003). At the single-trial level, differential patterns of response were observed for frequency vs duration/intensity deviants, along with At the network level, MMN deficits engaged canonical somatomotor, ventral attention and default networks, with a differential pattern of engagement across deviant types (P<0.0001). Findings indicate that deficits in thalamocortical, as well as corticocortical, connectivity contribute to auditory dysfunction in schizophrenia. In addition, differences in ERSP and rsfcMRI profiles across deviant types suggest potential differential engagement of underlying generator mechanisms.


Subject(s)
Electroencephalography/methods , Evoked Potentials, Auditory/physiology , Schizophrenia/physiopathology , Acoustic Stimulation/methods , Adult , Attention/physiology , Auditory Cortex/metabolism , Auditory Cortex/physiopathology , Auditory Perception/physiology , Case-Control Studies , Cognition Disorders/complications , Cognition Disorders/physiopathology , Female , Humans , Male , Membrane Potentials/physiology , Middle Aged , Schizophrenia/complications
2.
Psychol Med ; 44(13): 2739-48, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25066878

ABSTRACT

BACKGROUND: Both language and music are thought to have evolved from a musical protolanguage that communicated social information, including emotion. Individuals with perceptual music disorders (amusia) show deficits in auditory emotion recognition (AER). Although auditory perceptual deficits have been studied in schizophrenia, their relationship with musical/protolinguistic competence has not previously been assessed. METHOD: Musical ability was assessed in 31 schizophrenia/schizo-affective patients and 44 healthy controls using the Montreal Battery for Evaluation of Amusia (MBEA). AER was assessed using a novel battery in which actors provided portrayals of five separate emotions. The Disorganization factor of the Positive and Negative Syndrome Scale (PANSS) was used as a proxy for language/thought disorder and the MATRICS Consensus Cognitive Battery (MCCB) was used to assess cognition. RESULTS: Highly significant deficits were seen between patients and controls across auditory tasks (p < 0.001). Moreover, significant differences were seen in AER between the amusia and intact music-perceiving groups, which remained significant after controlling for group status and education. Correlations with AER were specific to the melody domain, and correlations between protolanguage (melody domain) and language were independent of overall cognition. DISCUSSION: This is the first study to document a specific relationship between amusia, AER and thought disorder, suggesting a shared linguistic/protolinguistic impairment. Once amusia was considered, other cognitive factors were no longer significant predictors of AER, suggesting that musical ability in general and melodic discrimination ability in particular may be crucial targets for treatment development and cognitive remediation in schizophrenia.


Subject(s)
Auditory Perceptual Disorders/physiopathology , Emotions/physiology , Language , Music , Schizophrenia/physiopathology , Social Perception , Adult , Auditory Perceptual Disorders/etiology , Female , Humans , Male , Middle Aged , Schizophrenia/complications
3.
Psychol Med ; 44(1): 25-36, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23611263

ABSTRACT

BACKGROUND: Intact sarcasm perception is a crucial component of social cognition and mentalizing (the ability to understand the mental state of oneself and others). In sarcasm, tone of voice is used to negate the literal meaning of an utterance. In particular, changes in pitch are used to distinguish between sincere and sarcastic utterances. Schizophrenia patients show well-replicated deficits in auditory function and functional connectivity (FC) within and between auditory cortical regions. In this study we investigated the contributions of auditory deficits to sarcasm perception in schizophrenia. METHOD: Auditory measures including pitch processing, auditory emotion recognition (AER) and sarcasm detection were obtained from 76 patients with schizophrenia/schizo-affective disorder and 72 controls. Resting-state FC (rsFC) was obtained from a subsample and was analyzed using seeds placed in both auditory cortex and meta-analysis-defined core-mentalizing regions relative to auditory performance. RESULTS: Patients showed large effect-size deficits across auditory measures. Sarcasm deficits correlated significantly with general functioning and impaired pitch processing both across groups and within the patient group alone. Patients also showed reduced sensitivity to alterations in mean pitch and variability. For patients, sarcasm discrimination correlated exclusively with the level of rsFC within primary auditory regions whereas for controls, correlations were observed exclusively within core-mentalizing regions (the right posterior superior temporal gyrus, anterior superior temporal sulcus and insula, and left posterior medial temporal gyrus). CONCLUSIONS: These findings confirm the contribution of auditory deficits to theory of mind (ToM) impairments in schizophrenia, and demonstrate that FC within auditory, but not core-mentalizing, regions is rate limiting with respect to sarcasm detection in schizophrenia.


Subject(s)
Brain/physiopathology , Neural Pathways/physiopathology , Psychotic Disorders/psychology , Schizophrenia/physiopathology , Schizophrenic Psychology , Social Perception , Speech Perception/physiology , Theory of Mind , Adult , Auditory Cortex/physiopathology , Auditory Perception/physiology , Case-Control Studies , Emotions , Female , Functional Neuroimaging , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Pattern Recognition, Physiological/physiology , Pitch Perception/physiology , Psychotic Disorders/physiopathology , Young Adult
4.
Mol Psychiatry ; 19(1): 20-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24166406

ABSTRACT

Currently, all treatments for schizophrenia (SCZ) function primarily by blocking D(2)-type dopamine receptors. Given the limitations of these medications, substantial efforts have been made to identify alternative neurochemical targets for treatment development in SCZ. One such target is brain glutamate. The objective of this article is to review and synthesize the proton magnetic resonance spectroscopy ((1)H MRS) and positron emission tomography (PET)/single-photon emission computed tomography (SPECT) investigations that have examined glutamatergic indices in SCZ, including those of modulatory compounds such as glutathione (GSH) and glycine, as well as data from ketamine challenge studies. The reviewed (1)H MRS and PET/SPECT studies support the theory of hypofunction of the N-methyl-D-aspartate receptor (NMDAR) in SCZ, as well as the convergence between the dopamine and glutamate models of SCZ. We also review several advances in MRS and PET technologies that have opened the door for new opportunities to investigate the glutamate system in SCZ and discuss some ways in which these imaging tools can be used to facilitate a greater understanding of the glutamate system in SCZ and the successful and efficient development of new glutamate-based treatments for SCZ.


Subject(s)
Drug Discovery , Glutamic Acid/metabolism , Schizophrenia/metabolism , Schizophrenia/pathology , Animals , Humans , Neuroimaging
SELECTION OF CITATIONS
SEARCH DETAIL