Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Nat Microbiol ; 9(2): 421-433, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38316928

ABSTRACT

Soil microbiomes are highly diverse, and to improve their representation in biogeochemical models, microbial genome data can be leveraged to infer key functional traits. By integrating genome-inferred traits into a theory-based hierarchical framework, emergent behaviour arising from interactions of individual traits can be predicted. Here we combine theory-driven predictions of substrate uptake kinetics with a genome-informed trait-based dynamic energy budget model to predict emergent life-history traits and trade-offs in soil bacteria. When applied to a plant microbiome system, the model accurately predicted distinct substrate-acquisition strategies that aligned with observations, uncovering resource-dependent trade-offs between microbial growth rate and efficiency. For instance, inherently slower-growing microorganisms, favoured by organic acid exudation at later plant growth stages, exhibited enhanced carbon use efficiency (yield) without sacrificing growth rate (power). This insight has implications for retaining plant root-derived carbon in soils and highlights the power of data-driven, trait-based approaches for improving microbial representation in biogeochemical models.


Subject(s)
Microbiota , Rhizosphere , Plant Roots/microbiology , Soil Microbiology , Soil/chemistry , Plants , Carbon
2.
Microbiome ; 11(1): 237, 2023 10 27.
Article in English | MEDLINE | ID: mdl-37891627

ABSTRACT

BACKGROUND: Viruses impact nearly all organisms on Earth, including microbial communities and their associated biogeochemical processes. In soils, highly diverse viral communities have been identified, with a global distribution seemingly driven by multiple biotic and abiotic factors, especially soil temperature and moisture. However, our current understanding of the stability of soil viral communities across time and their response to strong seasonal changes in environmental parameters remains limited. Here, we investigated the diversity and activity of environmental soil DNA and RNA viruses, focusing especially on bacteriophages, across dynamics' seasonal changes in a snow-dominated mountainous watershed by examining paired metagenomes and metatranscriptomes. RESULTS: We identified a large number of DNA and RNA viruses taxonomically divergent from existing environmental viruses, including a significant proportion of fungal RNA viruses, and a large and unsuspected diversity of positive single-stranded RNA phages (Leviviricetes), highlighting the under-characterization of the global soil virosphere. Among these, we were able to distinguish subsets of active DNA and RNA phages that changed across seasons, consistent with a "seed-bank" viral community structure in which new phage activity, for example, replication and host lysis, is sequentially triggered by changes in environmental conditions. At the population level, we further identified virus-host dynamics matching two existing ecological models: "Kill-The-Winner" which proposes that lytic phages are actively infecting abundant bacteria, and "Piggyback-The-Persistent" which argues that when the host is growing slowly, it is more beneficial to remain in a dormant state. The former was associated with summer months of high and rapid microbial activity, and the latter with winter months of limited and slow host growth. CONCLUSION: Taken together, these results suggest that the high diversity of viruses in soils is likely associated with a broad range of host interaction types each adapted to specific host ecological strategies and environmental conditions. As our understanding of how environmental and host factors drive viral activity in soil ecosystems progresses, integrating these viral impacts in complex natural microbiome models will be key to accurately predict ecosystem biogeochemistry. Video Abstract.


Subject(s)
Bacteriophages , Microbiota , Viruses , Humans , Ecosystem , Soil , Altitude , Viruses/genetics , Bacteriophages/genetics , Soil Microbiology , Microbiota/genetics , DNA
4.
Front Bioinform ; 2: 918853, 2022.
Article in English | MEDLINE | ID: mdl-36304272

ABSTRACT

Remote sensing approaches have revolutionized the study of macroorganisms, allowing theories of population and community ecology to be tested across increasingly larger scales without much compromise in resolution of biological complexity. In microbial ecology, our remote window into the ecology of microorganisms is through the lens of genome sequencing. For microbial organisms, recent evidence from genomes recovered from metagenomic samples corroborate a highly complex view of their metabolic diversity and other associated traits which map into high physiological complexity. Regardless, during the first decades of this omics era, microbial ecological research has primarily focused on taxa and functional genes as ecological units, favoring breadth of coverage over resolution of biological complexity manifested as physiological diversity. Recently, the rate at which provisional draft genomes are generated has increased substantially, giving new insights into ecological processes and interactions. From a genotype perspective, the wide availability of genome-centric data requires new data synthesis approaches that place organismal genomes center stage in the study of environmental roles and functional performance. Extraction of ecologically relevant traits from microbial genomes will be essential to the future of microbial ecological research. Here, we present microTrait, a computational pipeline that infers and distills ecologically relevant traits from microbial genome sequences. microTrait maps a genome sequence into a trait space, including discrete and continuous traits, as well as simple and composite. Traits are inferred from genes and pathways representing energetic, resource acquisition, and stress tolerance mechanisms, while genome-wide signatures are used to infer composite, or life history, traits of microorganisms. This approach is extensible to any microbial habitat, although we provide initial examples of this approach with reference to soil microbiomes.

5.
Int J Cancer ; 151(10): 1703-1716, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35751398

ABSTRACT

The incidence of esophageal adenocarcinoma (EA) has drastically increased in the United States since 1970s for unclear reasons. We hypothesized that the widespread usage of antibiotics has increased the procarcinogenic potential of the orodigestive microbiota along the sequence of gastroesophageal reflux (GR), Barrett's esophagus (BE) and EA phenotypes. This case control study included normal controls (NC) and three disease phenotypes GR, BE and EA. Microbiota in the mouth, esophagus, and stomach, and rectum were analyzed using 16S rRNA gene sequencing. Overall, we discovered 44 significant pairwise differences in abundance of microbial taxa between the four phenotypes, with 12 differences in the mouth, 21 in the esophagus, two in the stomach, and nine in the rectum. Along the GR→BE→EA sequence, oral and esophageal microbiota were more diversified, the dominant genus Streptococcus was progressively depleted while six other genera Atopobium, Actinomyces, Veillonella, Ralstonia, Burkholderia and Lautropia progressively enriched. In NC, Streptococcus appeared to control populations of other genera in the foregut via numerous negative and positive connections, while in disease states, the rich network was markedly simplified. Inferred gene functional content showed a progressive enrichment through the stages of EA development in genes encoding antibiotic resistance, ligands of Toll-like and NOD-like receptors, nitrate-nitrite-nitric oxide pathway and acetaldehyde metabolism. The orodigestive microbiota is in a progressive dysbiotic state along the GR-BE-EA sequence. The increasing dysbiosis and antibiotic and procarcinogenic genes in the disease states warrants further study to define their roles in EA pathogenesis.


Subject(s)
Adenocarcinoma , Barrett Esophagus , Esophageal Neoplasms , Gastroesophageal Reflux , Microbiota , Acetaldehyde , Adenocarcinoma/pathology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Barrett Esophagus/genetics , Barrett Esophagus/pathology , Case-Control Studies , Dysbiosis , Esophageal Neoplasms/epidemiology , Humans , Ligands , Microbiota/genetics , NLR Proteins , Nitrates , Nitric Oxide , Nitrites , RNA, Ribosomal, 16S/genetics
6.
Bioinformatics ; 38(9): 2389-2396, 2022 04 28.
Article in English | MEDLINE | ID: mdl-35212706

ABSTRACT

MOTIVATION: Microbiome datasets provide rich information about microbial communities. However, vast library size variations across samples present great challenges for proper statistical comparisons. To deal with these challenges, rarefaction is often used in practice as a normalization technique, although there has been debate whether rarefaction should ever be used. Conventional wisdom and previous work suggested that rarefaction should never be used in practice, arguing that rarefying microbiome data is statistically inadmissible. These discussions, however, have been confined to particular parametric models and simulation studies. RESULTS: We develop a semiparametric graphical model framework for grouped microbiome data and analyze in the context of differential abundance testing the statistical trade-offs of the rarefaction procedure, accounting for latent variations and measurement errors. Under the framework, it can be shown rarefaction guarantees that subsequent permutation tests properly control the Type I error. In addition, the loss in sensitivity from rarefaction is solely due to increased measurement error; if the underlying variation in microbial composition is large among samples, rarefaction might not hurt subsequent statistical inference much. We develop the rarefaction efficiency index (REI) as an indicator for efficiency loss and illustrate it with a dataset on the effect of storage conditions for microbiome data. Simulation studies based on real data demonstrate that the impact of rarefaction on sensitivity is negligible when overdispersion is prominent, while low REI corresponds to scenarios in which rarefying might substantially lower the statistical power. Whether to rarefy or not ultimately depends on assumptions of the data generating process and characteristics of the data. AVAILABILITY AND IMPLEMENTATION: Source codes are publicly available at https://github.com/jcyhong/rarefaction. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Microbiota , Microbiota/genetics , Software , Computer Simulation , Gene Library
7.
Microbiome ; 10(1): 33, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35172890

ABSTRACT

BACKGROUND: Advances in microbiome science are being driven in large part due to our ability to study and infer microbial ecology from genomes reconstructed from mixed microbial communities using metagenomics and single-cell genomics. Such omics-based techniques allow us to read genomic blueprints of microorganisms, decipher their functional capacities and activities, and reconstruct their roles in biogeochemical processes. Currently available tools for analyses of genomic data can annotate and depict metabolic functions to some extent; however, no standardized approaches are currently available for the comprehensive characterization of metabolic predictions, metabolite exchanges, microbial interactions, and microbial contributions to biogeochemical cycling. RESULTS: We present METABOLIC (METabolic And BiogeOchemistry anaLyses In miCrobes), a scalable software to advance microbial ecology and biogeochemistry studies using genomes at the resolution of individual organisms and/or microbial communities. The genome-scale workflow includes annotation of microbial genomes, motif validation of biochemically validated conserved protein residues, metabolic pathway analyses, and calculation of contributions to individual biogeochemical transformations and cycles. The community-scale workflow supplements genome-scale analyses with determination of genome abundance in the microbiome, potential microbial metabolic handoffs and metabolite exchange, reconstruction of functional networks, and determination of microbial contributions to biogeochemical cycles. METABOLIC can take input genomes from isolates, metagenome-assembled genomes, or single-cell genomes. Results are presented in the form of tables for metabolism and a variety of visualizations including biogeochemical cycling potential, representation of sequential metabolic transformations, community-scale microbial functional networks using a newly defined metric "MW-score" (metabolic weight score), and metabolic Sankey diagrams. METABOLIC takes ~ 3 h with 40 CPU threads to process ~ 100 genomes and corresponding metagenomic reads within which the most compute-demanding part of hmmsearch takes ~ 45 min, while it takes ~ 5 h to complete hmmsearch for ~ 3600 genomes. Tests of accuracy, robustness, and consistency suggest METABOLIC provides better performance compared to other software and online servers. To highlight the utility and versatility of METABOLIC, we demonstrate its capabilities on diverse metagenomic datasets from the marine subsurface, terrestrial subsurface, meadow soil, deep sea, freshwater lakes, wastewater, and the human gut. CONCLUSION: METABOLIC enables the consistent and reproducible study of microbial community ecology and biogeochemistry using a foundation of genome-informed microbial metabolism, and will advance the integration of uncultivated organisms into metabolic and biogeochemical models. METABOLIC is written in Perl and R and is freely available under GPLv3 at https://github.com/AnantharamanLab/METABOLIC . Video abstract.


Subject(s)
Genome, Microbial , Microbiota , Humans , Lakes , Metagenome/genetics , Metagenomics , Microbiota/genetics
8.
Viruses ; 13(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34960611

ABSTRACT

The interaction between gut bacterial and viral microbiota is thought to be important in human health. While fluctuations in female genital tract (FGT) bacterial microbiota similarly determine sexual health, little is known about the presence, persistence, and function of vaginal bacteriophages. We conducted shotgun metagenome sequencing of cervicovaginal samples from South African adolescents collected longitudinally, who received no antibiotics. We annotated viral reads and circular bacteriophages, identified CRISPR loci and putative prophages, and assessed their diversity, persistence, and associations with bacterial microbiota composition. Siphoviridae was the most prevalent bacteriophage family, followed by Myoviridae, Podoviridae, Herelleviridae, and Inoviridae. Full-length siphoviruses targeting bacterial vaginosis (BV)-associated bacteria were identified, suggesting their presence in vivo. CRISPR loci and prophage-like elements were common, and genomic analysis suggested higher diversity among Gardnerella than Lactobacillus prophages. We found that some prophages were highly persistent within participants, and identical prophages were present in cervicovaginal secretions of multiple participants, suggesting that prophages, and thus bacterial strains, are shared between adolescents. The number of CRISPR loci and prophages were associated with vaginal microbiota stability and absence of BV. Our analysis suggests that (pro)phages are common in the FGT and vaginal bacteria and (pro)phages may interact.


Subject(s)
Bacteriophages/isolation & purification , Metagenome , Microbiota , Vagina , Adolescent , Cohort Studies , Female , Humans , South Africa/epidemiology , Vagina/microbiology , Vagina/virology
9.
Front Microbiol ; 12: 572212, 2021.
Article in English | MEDLINE | ID: mdl-34248859

ABSTRACT

Microorganisms have evolved several mechanisms to mobilize and mineralize occluded and insoluble phosphorus (P), thereby promoting plant growth in terrestrial ecosystems. However, the linkages between microbial P-solubilization traits and the preponderance of insoluble P in natural ecosystems are not well known. We tested the P solubilization traits of hundreds of culturable bacteria representative of the rhizosphere from a natural gradient where P concentration and bioavailability decline as soil becomes progressively more weathered. Aluminum, iron phosphate and organic P (phytate) were expected to dominate in more weathered soils. A defined cultivation medium with these chemical forms of P was used for isolation. A combination of soil chemical, spectroscopic analyses and 16S rRNA gene sequencing were used to understand the in situ ability for solubilization of these predominant forms of P. Locations with more occluded and organic P harbored the greatest abundance of P-mobilizing microorganisms, especially Burkholderiaceae (Caballeronia and Paraburkholderia spp.). Nearly all bacteria utilized aluminum phosphate, however fewer could subsist on iron phosphate (FePO4) or phytate. Microorganisms isolated from phytic acid were also most effective at solubilizing FePO4, suggesting that phytate solubilization may be linked to the ability to solubilize Fe. Significantly, we observed Fe to be co-located with P in organic patches in soil. Siderophore addition in lab experiments reinstated phytase mediated P-solubilization from Fe-phytate complexes. Taken together, these results indicate that metal-organic-P complex formation may limit enzymatic P solubilization from phytate in soil. Additionally, the linked traits of phytase and siderophore production were mostly restricted to specific clades within the Burkholderiaceae. We propose that Fe complexation of organic P (e.g., phytate) represents a major constraint on P turnover and availability in acidic soils, as only a limited subset of bacteria appear to possess the traits required to access this persistent pool of soil P.

10.
Sci Rep ; 11(1): 4766, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637780

ABSTRACT

Carbohydrate rich substrates such as lignocellulosic hydrolysates remain one of the primary sources of potentially renewable fuel and bulk chemicals. The pentose sugar D-xylose is often present in significant amounts along with hexoses. Saccharomyces cerevisiae can acquire the ability to metabolize D-xylose through expression of heterologous D-xylose isomerase (XI). This enzyme is notoriously difficult to express in S. cerevisiae and only fourteen XIs have been reported to be active so far. We cloned a new D-xylose isomerase derived from microorganisms in the gut of the wood-feeding beetle Odontotaenius disjunctus. Although somewhat homologous to the XI from Piromyces sp. E2, the new gene was identified as bacterial in origin and the host as a Parabacteroides sp. Expression of the new XI in S. cerevisiae resulted in faster aerobic growth than the XI from Piromyces on D-xylose media. The D-xylose isomerization rate conferred by the new XI was also 72% higher, while absolute xylitol production was identical in both strains. Interestingly, increasing concentrations of xylitol (up to 8 g L-1) appeared not to inhibit D-xylose consumption. The newly described XI displayed 2.6 times higher specific activity, 37% lower KM for D-xylose, and exhibited higher activity over a broader temperature range, retaining 51% of maximal activity at 30 °C compared with only 29% activity for the Piromyces XI.


Subject(s)
Aldose-Ketose Isomerases/genetics , Bacteroidetes/enzymology , Coleoptera/microbiology , Saccharomyces cerevisiae/genetics , Animals , Bacterial Proteins/genetics , Bacteroidetes/genetics , Cloning, Molecular , Gastrointestinal Microbiome , Gene Expression , Genes, Bacterial , Phylogeny , Plasmids/genetics
11.
Nat Commun ; 11(1): 5578, 2020 11 04.
Article in English | MEDLINE | ID: mdl-33149114

ABSTRACT

Young women in sub-Saharan Africa are disproportionally affected by HIV infection and unintended pregnancies. However, hormonal contraceptive (HC) use may influence HIV risk through changes in genital tract microbiota and inflammatory cytokines. To investigate this, 130 HIV negative adolescent females aged 15-19 years were enrolled into a substudy of UChoose, an open-label randomized crossover study (NCT02404038), comparing acceptability and contraceptive product preference as a proxy for HIV prevention delivery methods. Participants were randomized to injectable norethisterone enanthate (Net-En), combined oral contraceptives (COC) or etonorgesterol/ethinyl estradiol combined contraceptive vaginal ring (CCVR) for 16 weeks, then crossed over to another HC for 16 weeks. Cervicovaginal samples were collected at baseline, crossover and exit for characterization of the microbiota and measurement of cytokine levels; primary endpoints were cervical T cell activation, vaginal microbial diversity and cytokine concentrations. Adolescents randomized to COCs had lower vaginal microbial diversity and relative abundance of HIV risk-associated taxa compared to Net-En or CCVR. Cervicovaginal inflammatory cytokine concentrations were significantly higher in adolescents randomized to CCVR compared to COC and Net-En. This suggests that COC use may induce an optimal vaginal ecosystem by decreasing bacterial diversity and inflammatory taxa, while CCVR use is associated with genital inflammation.


Subject(s)
Cytokines/metabolism , HIV Infections/prevention & control , Hormonal Contraception/adverse effects , Microbiota/drug effects , Vagina/drug effects , Adolescent , Africa South of the Sahara , Contraceptive Devices, Female , Contraceptives, Oral, Combined/administration & dosage , Cross-Over Studies , Female , Humans , Microbiota/genetics , Norethindrone/administration & dosage , Norethindrone/analogs & derivatives , RNA, Ribosomal, 16S/genetics , T-Lymphocytes/metabolism , Vagina/metabolism , Vagina/microbiology , Young Adult
12.
Front Microbiol ; 11: 871, 2020.
Article in English | MEDLINE | ID: mdl-32477299

ABSTRACT

Soil microbial biomass can reach its annual maximum pool size beneath the winter snowpack and is known to decline abruptly following snowmelt in seasonally snow-covered ecosystems. Observed differences in winter versus summer microbial taxonomic composition also suggests that phylogenetically conserved traits may permit winter- versus summer-adapted microorganisms to occupy distinct niches. In this study, we sought to identify archaea, bacteria, and fungi that are associated with the soil microbial bloom overwinter and the subsequent biomass collapse following snowmelt at a high-altitude watershed in central Colorado, United States. Archaea, bacteria, and fungi were categorized into three life strategies (Winter-Adapted, Snowmelt-Specialist, Spring-Adapted) based upon changes in abundance during winter, the snowmelt period, and after snowmelt in spring. We calculated indices of phylogenetic relatedness (archaea and bacteria) or assigned functional attributes (fungi) to organisms within life strategies to infer whether phylogenetically conserved traits differentiate Winter-Adapted, Snowmelt-Specialist, and Spring-Adapted groups. We observed that the soil microbial bloom was correlated in time with a pulse of snowmelt infiltration, which commenced 65 days prior to soils becoming snow-free. A pulse of nitrogen (N, as nitrate) occurred after snowmelt, along with a collapse in the microbial biomass pool size, and an increased abundance of nitrifying archaea and bacteria (e.g., Thaumarchaeota, Nitrospirae). Winter- and Spring-Adapted archaea and bacteria were phylogenetically clustered, suggesting that phylogenetically conserved traits allow Winter- and Spring-Adapted archaea and bacteria to occupy distinct niches. In contrast, Snowmelt-Specialist archaea and bacteria were phylogenetically overdispersed, suggesting that the key mechanism(s) of the microbial biomass crash are likely to be density-dependent (e.g., trophic interactions, competitive exclusion) and affect organisms across a broad phylogenetic spectrum. Saprotrophic fungi were the dominant functional group across fungal life strategies, however, ectomycorrhizal fungi experienced a large increase in abundance in spring. If well-coupled plant-mycorrhizal phenology currently buffers ecosystem N losses in spring, then changes in snowmelt timing may alter ecosystem N retention potential. Overall, we observed that snowmelt separates three distinct soil niches that are occupied by ecologically distinct groups of microorganisms. This ecological differentiation is of biogeochemical importance, particularly with respect to the mobilization of nitrogen during winter, before and after snowmelt.

13.
ISME J ; 14(4): 999-1014, 2020 04.
Article in English | MEDLINE | ID: mdl-31953507

ABSTRACT

The rhizosphere is a hotspot for microbial carbon transformations, and is the entry point for root polysaccharides and polymeric carbohydrates that are important precursors to soil organic matter (SOM). However, the ecological mechanisms that underpin rhizosphere carbohydrate depolymerization are poorly understood. Using Avena fatua, a common annual grass, we analyzed time-resolved metatranscriptomes to compare microbial functions in rhizosphere, detritusphere, and combined rhizosphere-detritusphere habitats. Transcripts were binned using a unique reference database generated from soil isolate genomes, single-cell amplified genomes, metagenomes, and stable isotope probing metagenomes. While soil habitat significantly affected both community composition and overall gene expression, the succession of microbial functions occurred at a faster time scale than compositional changes. Using hierarchical clustering of upregulated decomposition genes, we identified four distinct microbial guilds populated by taxa whose functional succession patterns suggest specialization for substrates provided by fresh growing roots, decaying root detritus, the combination of live and decaying root biomass, or aging root material. Carbohydrate depolymerization genes were consistently upregulated in the rhizosphere, and both taxonomic and functional diversity were highest in the combined rhizosphere-detritusphere, suggesting coexistence of rhizosphere guilds is facilitated by niche differentiation. Metatranscriptome-defined guilds provide a framework to model rhizosphere succession and its consequences for soil carbon cycling.


Subject(s)
Rhizosphere , Soil Microbiology , Avena/metabolism , Biomass , Carbon/metabolism , Cell Differentiation , Ecosystem , Plant Roots/metabolism , Soil/chemistry
14.
mBio ; 10(5)2019 10 29.
Article in English | MEDLINE | ID: mdl-31662456

ABSTRACT

For free-living bacteria and archaea, the equivalent of the biological species concept does not exist, creating several obstacles to the study of the processes contributing to microbial diversification. These obstacles are particularly high in soil, where high bacterial diversity inhibits the study of closely related genotypes and therefore the factors structuring microbial populations. Here, we isolated strains within a single Curtobacterium ecotype from surface soil (leaf litter) across a regional climate gradient and investigated the phylogenetic structure, recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. Our results indicate that microbial populations are delineated by gene flow discontinuities, with distinct populations cooccurring at multiple sites. Bacterial population structure was further delineated by genomic features allowing for the identification of candidate genes possibly contributing to local adaptation. These results suggest that the genetic structure within this bacterium is maintained both by ecological specialization in localized microenvironments (isolation by environment) and by dispersal limitation between geographic locations (isolation by distance).IMPORTANCE Due to the promiscuous exchange of genetic material and asexual reproduction, delineating microbial species (and, by extension, populations) remains challenging. Because of this, the vast majority of microbial studies assessing population structure often compare divergent strains from disparate environments under varied selective pressures. Here, we investigated the population structure within a single bacterial ecotype, a unit equivalent to a eukaryotic species, defined as highly clustered genotypic and phenotypic strains with the same ecological niche. Using a combination of genomic and computational analyses, we assessed the phylogenetic structure, extent of recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. To our knowledge, this study is the first to do so for a dominant soil bacterium. Our results indicate that bacterial soil populations, similarly to those in other environments, are structured by gene flow discontinuities and exhibit distributional patterns consistent with both isolation by distance and isolation by environment. Thus, both dispersal limitation and local environments contribute to the divergence among closely related soil bacteria as observed in macroorganisms.


Subject(s)
Bacteria/genetics , Soil Microbiology , Actinobacteria/genetics , Bacteria/classification , Ecology , Ecosystem , Gene Flow , Genetic Variation , Genome, Bacterial , Phylogeny , RNA, Ribosomal, 16S/genetics , Soil
15.
Sci Rep ; 9(1): 10370, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31316095

ABSTRACT

Determining the carbon sources for active microbial populations in the subsurface is a challenging but highly informative component of subsurface microbial ecology. This work developed a method to provide ecological insights into groundwater microbial communities by characterizing community RNA through its radiocarbon and ribosomal RNA (rRNA) signatures. RNA was chosen as the biomolecule of interest because rRNA constitutes the majority of RNA in prokaryotes, represents recently active organisms, and yields detailed taxonomic information. The method was applied to a groundwater filter collected from a shallow alluvial aquifer in Colorado. RNA was extracted, radiometrically dated, and the 16S rRNA was analyzed by RNA-Seq. The RNA had a radiocarbon signature (Δ14C) of -193.4 ± 5.6‰. Comparison of the RNA radiocarbon signature to those of potential carbon pools in the aquifer indicated that at least 51% of the RNA was derived from autotrophy, in close agreement with the RNA-Seq data, which documented the prevalence of autotrophic taxa, such as Thiobacillus and Gallionellaceae. Overall, this hybrid method for RNA analysis provided cultivation-independent information on the in-situ carbon sources of active subsurface microbes and reinforced the importance of autotrophy and the preferential utilization of dissolved over sedimentary organic matter in alluvial aquifers.


Subject(s)
Autotrophic Processes , Bacteria/metabolism , Groundwater/microbiology , RNA, Bacterial/analysis , RNA, Ribosomal, 16S/analysis , Water Microbiology , Bacteria/genetics , Bacteria/isolation & purification , Base Sequence , Carbon Cycle , Carbon Radioisotopes/analysis , Colorado , Escherichia coli/metabolism , Iron/metabolism , Phylogeny , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Radiometric Dating , Sequence Analysis, RNA , Sulfur/metabolism
16.
Nat Microbiol ; 4(5): 864-875, 2019 05.
Article in English | MEDLINE | ID: mdl-30858574

ABSTRACT

Beneficial microbial associations enhance the fitness of most living organisms, and wood-feeding insects offer some of the most striking examples of this. Odontotaenius disjunctus is a wood-feeding beetle that possesses a digestive tract with four main compartments, each of which contains well-differentiated microbial populations, suggesting that anatomical properties and separation of these compartments may enhance energy extraction from woody biomass. Here, using integrated chemical analyses, we demonstrate that lignocellulose deconstruction and fermentation occur sequentially across compartments, and that selection for microbial groups and their metabolic pathways is facilitated by gut anatomical features. Metaproteogenomics showed that higher oxygen concentration in the midgut drives lignocellulose depolymerization, while a thicker gut wall in the anterior hindgut reduces oxygen diffusion and favours hydrogen accumulation, facilitating fermentation, homoacetogenesis and nitrogen fixation. We demonstrate that depolymerization continues in the posterior hindgut, and that the beetle excretes an energy- and nutrient-rich product on which its offspring subsist and develop. Our results show that the establishment of beneficial microbial partners within a host requires both the acquisition of the microorganisms and the formation of specific habitats within the host to promote key microbial metabolic functions. Together, gut anatomical properties and microbial functional assembly enable lignocellulose deconstruction and colony subsistence on an extremely nutrient-poor diet.


Subject(s)
Bacteria/isolation & purification , Coleoptera/microbiology , Gastrointestinal Microbiome , Lignin/metabolism , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Coleoptera/metabolism , Fermentation , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/microbiology , Hydrogen/metabolism , Oxygen/metabolism , Phylogeny , Wood/metabolism , Wood/microbiology
17.
PLoS One ; 13(9): e0202792, 2018.
Article in English | MEDLINE | ID: mdl-30204767

ABSTRACT

Hypersaline photosynthetic microbial mats are stratified microbial communities known for their taxonomic and metabolic diversity and strong light-driven day-night environmental gradients. In this study of the upper photosynthetic zone of hypersaline microbial mats of Elkhorn Slough, California (USA), we show how metagenome sequencing can be used to meaningfully assess microbial ecology and genetic partitioning in these complex microbial systems. Mapping of metagenome reads to the dominant Cyanobacteria observed in the system, Coleofasciculus (Microcoleus) chthonoplastes, was used to examine strain variants within these metagenomes. Highly conserved gene subsystems indicated a core genome for the species, and a number of variant genes and subsystems suggested strain level differentiation, especially for nutrient utilization and stress response. Metagenome sequence coverage binning was used to assess ecosystem partitioning of remaining microbes to both reconstruct the model organisms in silico and identify their ecosystem functions as well as to identify novel clades and propose their role in the biogeochemical cycling of mats. Functional gene annotation of these bins (primarily of Proteobacteria, Bacteroidetes, and Cyanobacteria) recapitulated the known biogeochemical functions in microbial mats using a genetic basis, and revealed significant diversity in the Bacteroidetes, presumably in heterotrophic cycling. This analysis also revealed evidence of putative phototrophs within the Gemmatimonadetes and Gammaproteobacteria residing in microbial mats. This study shows that metagenomic analysis can produce insights into the systems biology of microbial ecosystems from a genetic perspective and to suggest further studies of novel microbes.


Subject(s)
Bacteria/classification , Metagenomics/methods , Whole Genome Sequencing/methods , Bacteria/genetics , Bacteroidetes/classification , Bacteroidetes/genetics , California , Cyanobacteria/classification , Cyanobacteria/genetics , Evolution, Molecular , Gammaproteobacteria/classification , Gammaproteobacteria/genetics , Molecular Sequence Annotation , Photosynthesis , Phylogeny , Proteobacteria/classification , Proteobacteria/genetics
18.
J Glob Antimicrob Resist ; 15: 239-245, 2018 12.
Article in English | MEDLINE | ID: mdl-30130640

ABSTRACT

OBJECTIVES: Thousands of cases of multidrug-resistant tuberculosis (TB) have been observed in the Philippines, but studies on the Mycobacterium tuberculosis (MTB) genotypes that underlie the observed drug resistance profiles are lacking. This study aimed to analyse the whole genomes of clinical MTB isolates representing various resistance profiles to identify single nucleotide polymorphisms (SNPs) in resistance-associated genes. METHODS: The genomes of ten MTB isolates cultured from banked sputum sources were sequenced. Bioinformatics analysis consisted of assembly, annotation and SNP identification in genes reported to be associated with resistance to isoniazid (INH), rifampicin (RIF), ethambutol (ETH), streptomycin, pyrazinamide (PZA) and fluoroquinolones (FQs). RESULTS: The draft assemblies covered an average of 97.08% of the expected genome size. Seven of the ten isolates belonged to the Indo-Oceanic lineage/EA12-Manila clade. Two isolates were classified into the Euro-American lineage, whilst the pre-XDR (pre-extensively drug-resistant) isolate was classified under the East Asian/Beijing clade. The SNPs katG Ser315Thr, rpoB Ser450Leu and embB Met306Val were found in INH- (4/7), RIF- (3/6) and ETH-resistant (2/6) isolates, respectively, but not in susceptible isolates. Mutations in the inhA promoter and in the pncA and gyrA genes known to be involved in resistance to INH, PZA and FQs, respectively, were also identified. CONCLUSIONS: This study represents the first effort to investigate the whole genomes of Philippine clinical strains of MTB exhibiting various multidrug resistance profiles. Whole-genome data can provide valuable insights to the mechanistic and epidemiological qualities of TB in a high-burden setting such as the Philippines.


Subject(s)
Genome, Bacterial , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/isolation & purification , Polymorphism, Single Nucleotide , Tuberculosis, Multidrug-Resistant/microbiology , Antitubercular Agents/pharmacology , Base Sequence , Drug Resistance, Multiple, Bacterial , Humans , Mycobacterium tuberculosis/classification , Mycobacterium tuberculosis/drug effects , Philippines , Phylogeny , Whole Genome Sequencing
19.
Clin Infect Dis ; 67(8): 1237-1246, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29659737

ABSTRACT

Background: Exclusive breastfeeding reduces the rate of postnatal human immunodeficiency virus (HIV) transmission compared to nonexclusive breastfeeding; however, the mechanisms of this protection are unknown. Our study aimed to interrogate the mechanisms underlying the protective effect of exclusive breastfeeding. Methods: We performed a prospective, longitudinal study of infants from a high-HIV-prevalence, low-income setting in South Africa. We evaluated the role of any non-breast milk feeds, excluding prescribed medicines on stool microbial communities via 16S rRNA gene sequencing, peripheral T-cell activation via flow cytometry, and buccal mucosal gene expression via quantitative polymerase chain reaction assay. Results: A total of 155 infants were recruited at birth with mean gestational age of 38.9 weeks and mean birth weight of 3.2 kg. All infants were exclusively breastfed (EBF) at birth, but only 43.5% and 20% remained EBF at 6 or 14 weeks of age, respectively. We observed lower stool microbial diversity and distinct microbial composition in exclusively breastfed infants. These microbial communities, and the relative abundance of key taxa, were correlated with peripheral CD4+ T-cell activation, which was lower in EBF infants. In the oral mucosa, gene expression of chemokine and chemokine receptors involved in recruitment of HIV target cells to tissues, as well as epithelial cytoskeletal proteins, was lower in EBF infants. Conclusions: These data suggest that nonexclusive breastfeeding alters the gut microbiota, increasing T-cell activation and, potentially, mucosal recruitment of HIV target cells. Study findings highlight a biologically plausible mechanistic explanation for the reduced postnatal HIV transmission observed in EBF infants.


Subject(s)
Breast Feeding , CD4-Positive T-Lymphocytes/immunology , Gastrointestinal Microbiome , HIV Infections/prevention & control , Lymphocyte Activation , Mouth Mucosa/immunology , Chemokines/genetics , Chemokines/immunology , Feces/microbiology , Gene Expression , HIV Infections/transmission , Humans , Infant , Infectious Disease Transmission, Vertical/prevention & control , Longitudinal Studies , Prospective Studies , RNA, Ribosomal, 16S/genetics , Receptors, Chemokine/genetics , Receptors, Chemokine/immunology , South Africa/epidemiology
20.
Nat Microbiol ; 3(4): 470-480, 2018 04.
Article in English | MEDLINE | ID: mdl-29556109

ABSTRACT

Like all higher organisms, plants have evolved in the context of a microbial world, shaping both their evolution and their contemporary ecology. Interactions between plant roots and soil microorganisms are critical for plant fitness in natural environments. Given this co-evolution and the pivotal importance of plant-microbial interactions, it has been hypothesized, and a growing body of literature suggests, that plants may regulate the composition of their rhizosphere to promote the growth of microorganisms that improve plant fitness in a given ecosystem. Here, using a combination of comparative genomics and exometabolomics, we show that pre-programmed developmental processes in plants (Avena barbata) result in consistent patterns in the chemical composition of root exudates. This chemical succession in the rhizosphere interacts with microbial metabolite substrate preferences that are predictable from genome sequences. Specifically, we observed a preference by rhizosphere bacteria for consumption of aromatic organic acids exuded by plants (nicotinic, shikimic, salicylic, cinnamic and indole-3-acetic). The combination of these plant exudation traits and microbial substrate uptake traits interact to yield the patterns of microbial community assembly observed in the rhizosphere of an annual grass. This discovery provides a mechanistic underpinning for the process of rhizosphere microbial community assembly and provides an attractive direction for the manipulation of the rhizosphere microbiome for beneficial outcomes.


Subject(s)
Actinobacteria/metabolism , Avena/metabolism , Avena/microbiology , Firmicutes/metabolism , Host Microbial Interactions/physiology , Microbiota/physiology , Plant Roots/microbiology , Proteobacteria/metabolism , Actinobacteria/isolation & purification , Cinnamates/metabolism , Firmicutes/isolation & purification , Indoleacetic Acids/metabolism , Niacin/metabolism , Plant Roots/metabolism , Proteobacteria/isolation & purification , Rhizosphere , Salicylic Acid/metabolism , Shikimic Acid/metabolism , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...