Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5346, 2024 03 04.
Article in English | MEDLINE | ID: mdl-38438431

ABSTRACT

Diabetic wound healing is sluggish, often ending in amputations. This study tested a novel, two-punch therapy in mice-Selenium nanoparticles (Se NPs) and platelet-rich plasma (PRP)-to boost healing. First, a mouse model of diabetes was created. Then, Se NPs were crafted for their impressive antioxidant and antimicrobial powers. PRP, packed with growth factors, was extracted from the mice's blood. Wound healing was tracked for 28 days through photos, scoring tools, and tissue analysis. Se NPs alone spurred healing, and PRP added extra fuel. Furthermore, when used in combination with PRP, the healing process was accelerated due to the higher concentration of growth factors in PRP. Notably, the combination of Se NPs and PRP exhibited a synergistic effect, significantly enhancing wound healing in diabetic mice. These findings hold promise for the treatment of diabetic wounds and have the potential to reduce the need for lower limb amputations associated with diabetic foot ulcers. The innovative combination therapy using Se NPs and PRP shows great potential in expediting the healing process and addressing the challenges of impaired wound healing in individuals with diabetes. This exciting finding suggests this therapy could change diabetic wound management, potentially saving limbs and improving lives.


Subject(s)
Diabetes Mellitus, Experimental , Nanoparticles , Platelet-Rich Plasma , Selenium , Animals , Mice , Selenium/pharmacology , Wound Healing
2.
J Photochem Photobiol B ; 173: 661-671, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28711840

ABSTRACT

A new ascorbic acid (AA) nanocomposite with low toxicity and high photo and thermal stability is constructed for certain dermatological applications in humans. The presented nanocomposite consists of AA, nano-hydroxyapatite (nHAp) and carboxymethyl cellulose (CMC). The physicochemical properties of such CMC-nHAp-AA nanocomposite were characterized using X-Ray diffractometery (XRD), Fourier Transform Infra-Red (FTIR), Energy Dispersive X-ray (EDX) and UV-VIS spectroscopies. The size and morphology of the synthesized nanocomposites were characterized by TEM/SEM techniques. A detailed photo and thermal stability studies were performed to examine the stability of AA in the proposed nanocomposite. The AA content showed great stability against sunlight up to 3h or more and against heat up to 100°C, whereas it showed relatively limited stability against laser light up to 10min depending on the laser type. Cytotoxicity endpoints, evaluating the cell viability and IC50 (50% inhibitory concentration) have been performed for the exposed synthesized nanocomposite. There wasn't any effect on the cell viability up to 50µg/mL of CMC-nHAp-AA nanocomposite. Based on IC50 values, it has been found that after 24h of observation the IC50 of CMC-nHAp-AA nanocomposite was 0.199µg/mL which depicts high safety profile of the proposed nanocomposite. The produced nanocomposite (CMC-nHAp-AA) is expected to possess great potential in dermatological applications due to its high stability and increased proliferative capacity which lasts longer than AA alone.


Subject(s)
Ascorbic Acid/chemistry , Durapatite/chemistry , Nanocomposites/chemistry , Cell Line , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Humans , Lasers , Light , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Nanocomposites/toxicity , Skin Aging/drug effects , Skin Aging/radiation effects , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...