Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Rev Sci Instrum ; 95(8)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39120446

ABSTRACT

Cryogenic confocal microscopy is a powerful method for studying solid state quantum devices such as single photon sources and optically controlled qubits. While the vast majority of such studies have been conducted at temperatures of a few Kelvin, experiments involving fragile quantum effects often require lower operating temperatures. To also allow for electrical dynamic control, microwave connectivity is required. For polarization-sensitive studies, free space optical access is advantageous compared to fiber coupling. Here we present a confocal microscope in a dilution refrigerator providing all the above features at temperatures below 100 mK. The installed high frequency cabling meets the requirements for state-of-the-art spin qubit experiments. As another unique advantage of our system, the sample fitting inside a large puck can be exchanged while keeping the cryostat cold with minimal realignment. Assessing the performance of the instrument, we demonstrate confocal imaging, sub-nanosecond modulation of the emission wavelength of a suitable sample, and an electron temperature of 76 mK. While the instrument was constructed primarily with the development of optical interfaces to electrically controlled qubits in mind, it can be used for many experiments involving quantum transport, solid state quantum optics, and microwave-optical transducers.

2.
ACS Appl Mater Interfaces ; 15(29): 35321-35331, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37432886

ABSTRACT

This paper explores the optical properties of an exfoliated MoSe2 monolayer implanted with Cr+ ions, accelerated to 25 eV. Photoluminescence of the implanted MoSe2 reveals an emission line from Cr-related defects that is present only under weak electron doping. Unlike band-to-band transition, the Cr-introduced emission is characterized by nonzero activation energy, long lifetimes, and weak response to the magnetic field. To rationalize the experimental results and get insights into the atomic structure of the defects, we modeled the Cr-ion irradiation process using ab initio molecular dynamics simulations followed by the electronic structure calculations of the system with defects. The experimental and theoretical results suggest that the recombination of electrons on the acceptors, which could be introduced by the Cr implantation-induced defects, with the valence band holes is the most likely origin of the low-energy emission. Our results demonstrate the potential of low-energy ion implantation as a tool to tailor the properties of two-dimensional (2D) materials by doping.

3.
J Phys Condens Matter ; 31(41): 415701, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31272091

ABSTRACT

We measure the evolution of low temperature photoluminescence in a WSe2 monolayer with increasing electron concentration level. By comparing non-resonant and resonant laser excitation, we find that the formation of negative trions is facilitated by very efficient phonon emission. The most prominent line in photolumienscence spectra in the intermediate range of carrier concentrations (below [Formula: see text] cm-2) is found to be 66 meV below the bright negative trion. Its measured properties, including low oscillator strength and the temperature dependence point to an interacting bright intervalley and dark intervalley trion state as the origin of the line.

4.
Phys Rev Lett ; 120(15): 156101, 2018 Apr 13.
Article in English | MEDLINE | ID: mdl-29756849

ABSTRACT

An absolute scale match between experiment and simulation in atomic-resolution off-axis electron holography is demonstrated, with unknown experimental parameters determined directly from the recorded electron wave function using an automated numerical algorithm. We show that the local thickness and tilt of a pristine thin WSe_{2} flake can be measured uniquely, whereas some electron optical aberrations cannot be determined unambiguously for a periodic object. The ability to determine local specimen and imaging parameters directly from electron wave functions is of great importance for quantitative studies of electrostatic potentials in nanoscale materials, in particular when performing in situ experiments and considering that aberrations change over time.

5.
Ultramicroscopy ; 178: 38-47, 2017 07.
Article in English | MEDLINE | ID: mdl-27554459

ABSTRACT

The phase and amplitude of the electron wavefunction that has passed through ultra-thin flakes of WSe2 is measured from high-resolution off-axis electron holograms. Both the experimental measurements and corresponding computer simulations are used to show that, as a result of dynamical diffraction, the spatially averaged phase does not increase linearly with specimen thickness close to an [001] zone axis orientation even when the specimen has a thickness of only a few layers. It is then not possible to infer the local specimen thickness of the WSe2 from either the phase or the amplitude alone. Instead, we show that the combined analysis of phase and amplitude from experimental measurements and simulations allows an accurate determination of the local specimen thickness. The relationship between phase and projected potential is shown to be approximately linear for extremely thin specimens that are tilted by several degrees in certain directions from the [001] zone axis. A knowledge of the specimen thickness then allows the electrostatic potential to be determined from the measured phase. By using this combined approach, we determine a value for the mean inner potential of WSe2 of 18.9±0.8V, which is 12% lower than the value calculated from neutral atom scattering factors.

6.
Inorg Chem ; 55(17): 8381-6, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27551948

ABSTRACT

This report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.

7.
ACS Appl Mater Interfaces ; 8(34): 22484-92, 2016 Aug 31.
Article in English | MEDLINE | ID: mdl-27504951

ABSTRACT

Density dependent growth and optical properties of periodic arrays of GaAs nanowires (NWs) by fast selective area growth MOVPE are investigated. As the period of the arrays is decreased from 500 nm down to 100 nm, a volume growth enhancement by a factor of up to four compared with the growth of a planar layer is observed. This increase is explained as resulting from increased collection of precursors on the side walls of the nanowires due to the gas flow redistribution in the space between the NWs. Normal spectral reflectance of the arrays is strongly reduced compared with a flat substrate surface in all fabricated arrays. Electromagnetic modeling reveals that this reduction is caused by antireflective action of the nanowire arrays and nanowire-diameter dependent light absorption. Irrespective of the periodicity and diameter, Raman scattering and grazing angle X-ray diffraction show signal from zinc blende and wurtzite phases, the latter originating from stacking faults as observed by high resolution transmission electron microscopy. Raman spectra contain intense surface phonons peaks, whose intensity depends strongly on the nanowire diameters as a result of potential structural changes and as well as variations of optical field distribution in the nanowires.

8.
ACS Appl Mater Interfaces ; 3(2): 287-92, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21261268

ABSTRACT

For hybrid solar cells, interfacial chemistry is one of the most critical factors for good device performance. We have demonstrated that the size of the surface ligands and the dispersion of nanoparticles in the solvent and in the polymer are important criteria in obtaining optimized device performance. The size of the ligands will affect the charge transport at the particle/particle and particle/polymer interfaces and the chemical structures of the ligands will determine their compatibility with the solvent and polymer. Hence other than pyridine, 2-thiophenemethylamine also showed good potential as ligand replacement for poly(3-hexylthiophene)/CdSe hybrid solar cells. With the right ligand combination, we have shown that the power conversion efficiency improved by a factor of 6 after ligand exchange.

9.
Science ; 295(5552): 102-5, 2002 Jan 04.
Article in English | MEDLINE | ID: mdl-11743163

ABSTRACT

Electroluminescence from a single quantum dot within the intrinsic region of a p-i-n junction is shown to act as an electrically driven single-photon source. At low injection currents, the dot electroluminescence spectrum reveals a single sharp line due to exciton recombination, while another line due to the biexciton emerges at higher currents. The second-order correlation function of the diode displays anti-bunching under a continuous drive current. Single-photon emission is stimulated by subnanosecond voltage pulses. These results suggest that semiconductor technology can be used to mass-produce a single-photon source for applications in quantum information technology.

SELECTION OF CITATIONS
SEARCH DETAIL