Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 25(32): 21183-21190, 2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37531215

ABSTRACT

Variability in the spectral properties of solid conformations of stilbene under various external conditions still remains obscure. The photophysical properties of trans-stilbene solution in solid polystyrene glass have been studied by absorption and time-resolved fluorescence. Concentration-induced quenching has been observed for small concentrations of stilbene. At large concentrations, the spectroscopic characteristics become split between the two phases of the sample: single-molecule properties are responsible for absorption, while the micro-crystalline phase dominates in fluorescence. Ab initio and molecular dynamics analyses suggest permanent twisting of the stilbene molecular structure upon crystallization, which supports spectroscopic phase separation.

2.
ACS Appl Nano Mater ; 6(6): 4770-4781, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-37006910

ABSTRACT

We propose a simple, fast, and low-cost method for producing Au-coated black Si-based SERS-active substrates with a proven enhancement factor of 106. Room temperature reactive ion etching of silicon wafer followed by nanometer-thin gold sputtering allows the formation of a highly developed lace-type Si surface covered with homogeneously distributed gold islands. The mosaic structure of deposited gold allows the use of Au-uncovered Si domains for Raman peak intensity normalization. The fabricated SERS substrates have prominent uniformity (with less than 6% SERS signal variations over large areas, 100 × 100 µm2). It has been found that the storage of SERS-active substrates in an ambient environment reduces the SERS signal by less than 3% in 1 month and not more than 40% in 20 months. We showed that Au-coated black Si-based SERS-active substrates can be reused after oxygen plasma cleaning and developed relevant protocols for removing covalently bonded and electrostatically attached molecules. Experiments revealed that the Raman signal of 4-MBA molecules covalently bonded to the Au coating measured after the 10th cycle was just 4 times lower than that observed for the virgin substrate. A case study of the reusability of the black Si-based substrate was conducted for the subsequent detection of 10-5 M doxorubicin, a widely used anticancer drug, after the reuse cycle. The obtained SERS spectra of doxorubicin were highly reproducible. We demonstrated that the fabricated substrate permits not only qualitative but also quantitative monitoring of analytes and is suitable for the determination of concentrations of doxorubicin in the range of 10-9-10-4 M. Reusable, stable, reliable, durable, low-cost Au-coated black Si-based SERS-active substrates are promising tools for routine laboratory research in different areas of science and healthcare.

3.
Materials (Basel) ; 16(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36903063

ABSTRACT

Black silicon (bSi) is a highly absorptive material in the UV-vis and NIR spectral range. Photon trapping ability makes noble metal plated bSi attractive for fabrication of surface enhanced Raman spectroscopy (SERS) substrates. By using a cost-effective room temperature reactive ion etching method, we designed and fabricated the bSi surface profile, which provides the maximum Raman signal enhancement under NIR excitation when a nanometrically-thin gold layer is deposited. The proposed bSi substrates are reliable, uniform, low cost and effective for SERS-based detection of analytes, making these materials essential for medicine, forensics and environmental monitoring. Numerical simulation revealed that painting bSi with a defected gold layer resulted in an increase in the plasmonic hot spots, and a substantial increase in the absorption cross-section in the NIR range.

4.
Nanotechnology ; 34(19)2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36745919

ABSTRACT

A systematic spectroscopic characterization of highly homogeneous water suspensions of 'buckydiamonds' comprising sp3cubic nanodiamond (ND) core covered with disordered sp2shell densely decorated with oxygen-containing groups demonstrates the excitation-wavelength-dependent photoluminescence (PL) given by at least four types of specific structures on the ND surface (hydroxyl, C=O containing ketones, carboxylic anhydrides, and carboxyl groups). PL properties of NDs suspensions possess concentration-dependent behavior revealing tendency of NDs to agglomerate. PL of NDs has been found to be strongly sensitive to pH of the environment in wide range of pH values, i.e. 2-11. We disclosed the mechanisms of pH sensitivity of the 'buckydiamond' and proved that it can serve as all-optical sensor of tiny pH variations suitable for further exploitation for pH sensing locally in the area where NDs have been delivered for any purpose, e.g. bioimaging or therapeutic needs.

5.
Sci Rep ; 12(1): 7330, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35513702

ABSTRACT

We demonstrated that wide-field second harmonic generation (SHG) microscopy of lung tissue in combination with quantitative analysis of SHG images is a powerful tool for fast and label-free visualization of the fibrosis pathogenesis in pulmonary arterial hypertension (PAH). Statistical analysis of the SHG images revealed changes of the collagen content and morphology in the lung tissue during the monocrotaline-induced PAH progression in rats. First order statistics disclosed the dependence of the collagen overproduction on time, the second order statistics indicated tightening of collagen fiber network around blood vessels and their spreading into the alveolar region. Fourier analysis revealed that enhancement of the fiber orientation in the collagen network with PAH progression was followed with its subsequent reduction at the terminating phase of the disease. Proposed approach has potential for assessing pulmonary fibrosis in interstitial lung disease, after lung(s) transplantation, cancer, etc.


Subject(s)
Pulmonary Arterial Hypertension , Second Harmonic Generation Microscopy , Animals , Collagen , Fibrosis , Fourier Analysis , Rats , Second Harmonic Generation Microscopy/methods
6.
Nanotechnology ; 33(9)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34818632

ABSTRACT

In living organisms, redox reactions play a crucial role in the progression of disorders accompanied by the overproduction of reactive oxygen and reactive chlorine species, such as hydrogen peroxide and hypochlorous acid, respectively. We demonstrate that green fluorescence graphene quantum dots (GQDs) can be employed for revealing the presence of the hypochlorous acid in aqueous solutions and cellular systems. Hypochlorous acid modifies the oxygen-containing groups of the GQD, predominantly opens epoxide ring C-O-C, forms excessive C=O bonds and damages the carbonic core of GQDs. These changes, which depend on the concentration of the hypochlorous acid and exposure time, manifest themselves in the absorbance and fluorescence spectra of the GQD, and in the fluorescence lifetime. We also show that the GQD fluorescence is not affected by hydrogen peroxide. This finding makes GQDs a promising sensing agent for selective detecting reactive chlorine species produced by neutrophils. Neutrophils actively accumulate GQDs allowing to visualize cells and to examine the redox processes via GQDs fluorescence. At high concentrations GQDs induce neutrophil activation and myeloperoxidase release, leading to the disruption of GQD structure by the produced hypochlorous acid. This makes the GQDs a biodegradable material suitable for various biomedical applications.


Subject(s)
Biosensing Techniques/methods , Fluorescent Dyes , Hypochlorous Acid , Neutrophils , Quantum Dots , Cells, Cultured , Fluorescent Dyes/analysis , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism , Graphite/chemistry , Humans , Hypochlorous Acid/analysis , Hypochlorous Acid/metabolism , Microscopy, Fluorescence , Neutrophils/chemistry , Neutrophils/metabolism , Peroxidase/metabolism , Quantum Dots/analysis , Quantum Dots/chemistry , Quantum Dots/metabolism
7.
J Colloid Interface Sci ; 591: 115-128, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33596501

ABSTRACT

In this research the molybdenum disulfide (MoS2)-based nano/microparticles and coatings were synthesized through a simple, one-step hydrothermal approach without any other additives. Composition, structure, and morphology of the synthesized MoS2-based materials were investigated using ultraviolet-visible spectroscopy (UV-Vis), inductively coupled plasma optical emission spectrometry (ICP-OES), scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy-dispersive X-ray spectroscopy (EDX) techniques. The fabricated materials exhibited relatively small (Δθ = 18.7 ± 2.5°) contact angle and prominent hydrophilic properties, which are attributable to sulfur-enriched MoS2 composite as evidenced by simultaneous thermal analysis (STA) coupled with mass spectrometric (MS) analysis of evolving gaseous species (TG/DTA-MS) analysis. Such nanostructures exhibit a better adhesion of biomolecules, thus facilitating the interaction between them, as confirmed by highly effective antimicrobial action. The present study examines antimicrobial properties of hydrophilic, sulfur-enriched MoS2 nano/microparticles as well as MoS2-based coatings against various humans' pathogenic bacteria such as Salmonella enterica, Pseudomonas aeruginosa, Escherichia coli, methicillin-resistant Staphylococcus aureus (MRSA), Micrococcus luteus, and two Candida yeast strains (C. parapsilosis, C. krusei). The MoS2-ns (40 µg mL-1) showed over 90% killing efficiency against S. aureus MRSA bacteria and both Candida yeast when exposed for 24 h. Petal-like MoS2 microstructures and heterostructured MoS2/Ti and Pd/MoS2/Ti coatings also possessed high antimicrobial potential and are considered as a promising antimicrobial agent. The MoS2-induced production of intracellular reactive oxygen species (ROS) was evidenced by measuring the standard DCF dye fluorescence.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Anti-Infective Agents/pharmacology , Disulfides , Humans , Molybdenum , Palladium , Staphylococcus aureus , Sulfur
8.
Phys Chem Chem Phys ; 23(5): 3447-3454, 2021 Feb 07.
Article in English | MEDLINE | ID: mdl-33506842

ABSTRACT

Fluorescence spectra as well as the fluorescence decay kinetics of hot-pressed and sublimated films of stilbene have been studied in a wide temperature range, from 15 K up to room temperature. The fluorescence decay kinetics demonstrate unusual elongation of the excitation lifetime with a temperature increase. This is in contrast to the corresponding data of stilbene solutions in chloroform and in a polystyrene (PS) matrix. It is well known that the excitation dynamics of stilbene in solution and in a PS matrix is controlled by the molecular isomerization/twisting process of separate molecules. The data analysis and quantum chemistry calculations of stilbene aggregates suggest that the temperature dependence of the fluorescence kinetics of bulk stilbene solids can be explained by fast exciton diffusion, which yields a thermalized exciton distribution in a relatively small number of fluorescence centres. The temperature dependence of the distribution can thus explain the observed fluorescence decay lifetimes.

9.
ACS Appl Mater Interfaces ; 12(45): 50971-50984, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33107725

ABSTRACT

Black silicon (bSi) refers to an etched silicon surface comprising arrays of microcones that effectively suppress reflection from UV to near-infrared (NIR) while simultaneously enhancing the scattering and absorption of light. This makes bSi covered with a nm-thin layer of plasmonic metal, i.e., gold, an attractive substrate material for sensing of bio-macromolecules and living cells using surface-enhanced Raman spectroscopy (SERS). The performed Raman measurements accompanied with finite element numerical simulation and density functional theory analysis revealed that at the 785 nm excitation wavelength, the SERS enhancement factor of the bSi/Au substrate is as high as 108 due to a combination of electromagnetic and chemical mechanisms. This finding makes the SERS-active bSi/Au substrate suitable for detecting trace amounts of organic molecules. We demonstrate the outstanding performance of this substrate by highly sensitive and specific detection of a small organic molecule of 4-mercaptobenzoic acid and living C6 rat glioma cell nucleic acids/proteins/lipids. Specifically, the bSi/Au SERS-active substrate offers a unique opportunity to investigate the living cells' malignant transformation using characteristic protein disulfide Raman bands as a marker. Our findings evidence that bSi/Au provides a pathway to the highly sensitive and selective, scalable, and low-cost substrate for lab-on-a-chip SERS biosensors that can be integrated into silicon-based photonics devices.


Subject(s)
Benzoates/analysis , Gold/chemistry , Silicon/chemistry , Sulfhydryl Compounds/analysis , Animals , Density Functional Theory , Particle Size , Rats , Spectrum Analysis, Raman , Surface Properties , Tumor Cells, Cultured
10.
Sensors (Basel) ; 20(18)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899745

ABSTRACT

Integration of living cells with nonbiological surfaces (substrates) of sensors, scaffolds, and implants implies severe restrictions on the interface quality and properties, which broadly cover all elements of the interaction between the living and artificial systems (materials, surface modifications, drug-eluting coatings, etc.). Substrate materials must support cellular viability, preserve sterility, and at the same time allow real-time analysis and control of cellular activity. We have compared new substrates based on graphene and pyrolytic carbon (PyC) for the cultivation of living cells. These are PyC films of nanometer thickness deposited on SiO2 and black silicon and graphene nanowall films composed of graphene flakes oriented perpendicular to the Si substrate. The structure, morphology, and interface properties of these substrates are analyzed in terms of their biocompatibility. The PyC demonstrates interface biocompatibility, promising for controlling cell proliferation and directional intercellular contact formation while as-grown graphene walls possess high hydrophobicity and poor biocompatibility. By performing experiments with C6 glioma cells we discovered that PyC is a cell-friendly coating that can be used without poly-l-lysine or other biopolymers for controlling cell adhesion. Thus, the opportunity to easily control the physical/chemical properties and nanotopography makes the PyC films a perfect candidate for the development of biosensors and 3D bioscaffolds.


Subject(s)
Biosensing Techniques , Cells , Graphite , Silicon Dioxide , Carbon , Hydrophobic and Hydrophilic Interactions , Surface Properties
11.
Biochem Biophys Res Commun ; 529(3): 647-651, 2020 08 27.
Article in English | MEDLINE | ID: mdl-32736687

ABSTRACT

The objective of the study is to determine the patterns of regulation of single-walled carbon nanotube accumulation, distribution, and agglomeration in glioma cells exposed to an external electric field. C6 glioma cells were treated with 5 µg/ml DNA wrapped single-walled carbon nanotubes and exposed to bi-phasic electric pulses (6.6 V/m, 200 Hz, pulse duration 1 ms). Nanotube accumulation was determined by Raman microspectroscopy and their intracellular local concentration was evaluated using the G-band intensity in Raman spectra of single-walled carbon nanotubes. It was revealed that the low-frequency and low-strength electric field stimulation of glioma cells exposed to single-walled carbon nanotubes led to facilitation and, thus, to amplification of nanotube accumulation inside the cells. The number of nanotubes in intracellular agglomerates increased from (28.8 ± 13.1) un./agglom. and (84.0 ± 28.7) un./agglom. in control samples to (60.6 ± 21.4) un./agglom. and (184.2 ± 53.4) un./agglom. for 1 h and 2 h stimulation, respectively. Thus, the tumor exposure to an external electric field makes it possible to more effectively regulate the accumulation and distribution of carbon nanotubes inside glioma cells allowing to reduce the applied therapeutic doses of carbon nanomaterial delivered anticancer drugs.


Subject(s)
Cell Membrane/physiology , Electricity , Glioma/therapy , Nanotubes, Carbon/chemistry , Animals , Cell Line, Tumor , Electric Stimulation , Glioma/pathology , Glioma/physiopathology , Membrane Potentials/physiology , Nanotechnology/methods , Rats , Spectrum Analysis, Raman
12.
Int J Biol Macromol ; 163: 676-682, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32629055

ABSTRACT

Glucose oxidase (GOx) is one of the most frequently used enzymes in a design of enzymatic biosensors and biofuel cells, which are novel electrical energy generation systems. Therefore, a better understanding of the mode of action of this enzyme is very important for further development of GOx-based sensors. In this research fluorescence properties of GOx in different acidic media have been estimated by the evaluation of redox states of active center that is flavine adenine dinucleotide (FAD). Steady-state fluorescence spectroscopy was applied to monitor the activity of GOx. A variation of pH has been invoked to gain a better understanding in the variations of GOx activity. The tendency of GOx activity to decrease over the time was determined, while increased intensity of the fluorescence band of GOx at 530 nm was associated with a decreased activity of the enzyme. The changes in fluorescence intensity of this band are caused by the dissociation of FAD from the enzyme. This process is not reversible, therefore, the decrease in the fluorescence intensity can be also associated with structural changes of the FAD during its reduction.


Subject(s)
Biosensing Techniques , Glucose Oxidase/chemistry , Spectrometry, Fluorescence , Enzyme Activation , Enzyme Stability , Flavin-Adenine Dinucleotide/chemistry , Hydrogen-Ion Concentration , Time Factors
13.
Materials (Basel) ; 13(12)2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32585794

ABSTRACT

In this research we have applied sol-gel synthesis for the deposition of tungsten (VI) oxide (WO3) layers using two different reductants (ethanol and propanol) and applying different dipping times. WO3 samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), photoluminescence (PL) and time-resolved photoluminescence decay methods. Photoelectrochemical (PEC) behaviour of synthesized coatings was investigated using cyclic voltammetry in the dark and under illumination. Formation of different structures in differently prepared samples was revealed and significant differences in the PL spectra and PEC performance of the samples were observed. The results showed that reductant used in the synthesis and dipping time strongly influenced photo-electrochemical properties of the coatings. Correlation between the morphology, PL and PEC behaviour has been explained.

14.
Nanoscale Res Lett ; 15(1): 37, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32034569

ABSTRACT

The shape of coherent anti-Stokes Raman scattering (CARS) spectral line depends on the ratio of the vibrational and electronic contributions to the third-order susceptibility of the material. The G-mode (1590 cm-1) of graphene and carbon nanotubes (CNTs) exhibits opposite features in the CARS spectrum, showing "dip" and "peak," respectively. Here, we consider the CARS spectra of graphene and carbon nanotubes in terms of Fano formalism describing the line shapes of CARS resonances. We show that imaging at only 1590 cm-1 is not sufficient to separate the constituents of a composite material consisting of both graphene and CNTs. We propose an algorithm to map the graphene and CNTs in a composite material.

15.
Sensors (Basel) ; 20(1)2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31877794

ABSTRACT

In this research we report the gas-sensing properties of TiO2-x/TiO2-based hetero-structure, which was 'self-heated' by current that at constant potential passed through the structure. Amperometric measurements were applied for the evaluation of sensor response towards ethanol, methanol, n-propanol and acetone gases/vapours. The sensitivity towards these gases was based on electrical resistance changes, which were determined by amperometric measurements of current at fixed voltage applied between Pt-based contacts/electrodes deposited on the TiO2-x/TiO2-based layer. X-ray diffraction (XRD) analysis revealed the formation of TiO2-x/TiO2-based hetero-structure, which is mainly based on Ti3O5/TiO2 formed during the hydro-thermal oxidation-based sensing-layer preparation process. Additionally, photoluminescence and time-resolved photoluminescence decay kinetics-based signals of this sensing structure revealed the presence of TiO2 mainly in the anatase phase in the TiO2-x/TiO2-based hetero-structure, which was formed at 400 °C annealing temperature. The evaluation of TiO2-x/TiO2-based gas-sensing layer was performed at several different temperatures (25 °C, 72 °C, 150 °C, 180 °C) and at these temperatures different sensitivity to the aforementioned gaseous materials was determined.

16.
Opt Express ; 26(8): 10527-10534, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29715988

ABSTRACT

Strong vibrational coherent anti-Stokes Raman scattering (CARS) signal was observed in single-wall carbon nanotubes (SWCNTs) having three different average diameters (about 0.8 nm, 1.1 nm and 1.3 nm) under optical excitation close to electronic resonance energies of nanotubes. By varying the excitation power from 1 up to 200 µW an optimal regime for non-destructive investigation of nonlinear properties of SWCNTs was determined. The possibility to detect a strong coherent nonlinear signal from small SWCNT-bundles together with CARS advantages over Raman scattering, such as high imaging rate, open new opportunities for fast three-dimensional visualisation of SWCNTs in a polymer matrix.

17.
Nanoscale Res Lett ; 10: 163, 2015.
Article in English | MEDLINE | ID: mdl-25897307

ABSTRACT

Graphene-enhanced Raman scattering (GERS) spectra and coherent anti-Stokes Raman scattering (CARS) of thymine molecules adsorbed on a single-layer graphene were studied. The enhancement factor was shown to depend on the molecular groups of thymine. In the GERS spectra of thymine, the main bands are shifted with respect to those for molecules adsorbed on a glass surface, indicating charge transfer for thymine on graphene. The probable mechanism of the GERS enhancement is discussed. CARS spectra are in accord with the GERS results, which indicates similar benefit from the chemical enhancement.

18.
Nanoscale Res Lett ; 9(1): 263, 2014.
Article in English | MEDLINE | ID: mdl-24948887

ABSTRACT

Coherent anti-Stokes Raman scattering (CARS) of carbon nanostructures, namely, highly oriented pyrolytic graphite, graphene nanoplatelets, graphene oxide, and multiwall carbon nanotubes as well CARS spectra of thymine (Thy) molecules adsorbed on graphene oxide were studied. The spectra of the samples were compared with spontaneous Raman scattering (RS) spectra. The CARS spectra of Thy adsorbed on graphene oxide are characterized by shifts of the main bands in comparison with RS. The CARS spectra of the initial nanocarbons are definitely different: for all investigated materials, there is a redistribution of D- and G-mode intensities, significant shift of their frequencies (more than 20 cm(-1)), and appearance of new modes about 1,400 and 1,500 cm(-1). The D band in CARS spectra is less changed than the G band; there is an absence of 2D-mode at 2,600 cm(-1) for graphene and appearance of intensive modes of the second order between 2,400 and 3,000 cm(-1). Multiphonon processes in graphene under many photon excitations seem to be responsible for the features of the CARS spectra. We found an enhancement of the CARS signal from thymine adsorbed on graphene oxide with maximum enhancement factor about 10(5). The probable mechanism of CARS enhancement is discussed.

19.
J Phys Chem A ; 115(10): 1861-8, 2011 Mar 17.
Article in English | MEDLINE | ID: mdl-21338165

ABSTRACT

Excited state relaxation of N-(triphenylmethyl)-salicylidenimine (MS1) in protic and aprotic solvents has been investigated by means of absorption pump-probe spectroscopy with femtosecond time resolution and fluorescence spectroscopy with picosecond time resolution. Short-lived excited states and long-lived photoproducts have been identified from the differential absorption spectra. Excited states and photoproducts were different under excitation of enol-closed and cis-keto tautomers. As a result, the commonly accepted excited state relaxation model of aromatic anils, which assumes an ultrafast transformation of excited enol-closed tautomers into cis-keto tautomers, has been modified. Performed quantum chemical calculations suggest that hydrogen-bonded ethanol molecules facilitate formation of cis-keto tautomers and are responsible for their different relaxation pathways in comparison with relaxation of excited enol-closed tauromers. Fluorescence decay on a nanosecond time scale was attributed to aggregated MS1 molecules.

20.
Appl Opt ; 45(25): 6620-5, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16912805

ABSTRACT

An oil spill detection fluorosensing lidar for onshore or shipboard operation is described. Some difficulties for its operation arise from the inclined path of rays. This is due to the increased reflection of the laser beam at the air-water interface, the decreased fluorescence signal, and the increased background light when compared with other instruments having a close-to-nadir measuring geometry. The analysis of these problems shows that they significantly reduce the detection distance in the presence of a flat water surface. However, waves on the water surface weaken the influence of the laser beam reflections but at the same time cause a variable fluorescence signal, which makes specific signal processing necessary for increased detection ranges. A fluorescence data processing method is proposed that efficiently eliminates the background water column fluorescence from signals such as yellow substance. This enables oil fluorescence to be distinguished from variable natural water fluorescence.

SELECTION OF CITATIONS
SEARCH DETAIL
...