Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Appl Biochem Biotechnol ; 196(1): 558-572, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37160565

ABSTRACT

Postweaning stress in mammalian in vivo models leads to significant oxidative stress in the body as well as inducing hormonal disturbance. In this study, we assessed progressive alterations in reactive oxygen species (ROS), which at high levels can show oxidative stress, in addition to oxidative damage to the DNA structure of rabbits. Different groups of rabbits were fasted for 48 h per week for 3 weeks, fed a commercial diet with probiotics added (200 mg of Bacillus licheniformis and Bacillus subtilis), and fasted while being treated with probiotics. The results showed that weaning induced a significant elevation in oxidative stress markers, such as the ROS-related genes malate dehydrogenase 1 (MDH1) and flavin-containing monooxygenase 2 (FMO2), DNA damage, and hormonal disturbance. However, probiotic treatment resulted in significant decreases in the levels of malondialdehyde, cortisol, and triiodothyronine (T3); DNA damage; and apoptosis, as well as changes in the expression of ROS-related genes. On the other hand, supplementation with probiotics reduced these postweaning stress signs in fasted animal models by elevating the genes encoding catalase and superoxide dismutase as well as increasing glutathione peroxidase (GSH-Px), glutathione-s-transferase, alkaline phosphatase, glucose, and thyroxin (T4) levels. The results suggest that supplementation with probiotics accompanied by a fasting program could decrease oxidative stress, ROS genes, and genomic DNA damage and improve the hormonal status that is induced by postweaning stress in mammalian in vivo models.


Subject(s)
Antioxidants , Probiotics , Animals , Rabbits , Antioxidants/pharmacology , Reactive Oxygen Species , Oxidative Stress , Superoxide Dismutase/metabolism , Probiotics/pharmacology , Fasting , Gene Expression , Mammals/metabolism
2.
Appl Biochem Biotechnol ; 193(11): 3454-3468, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34240313

ABSTRACT

Nephrotoxicity induced by exposure to environmental pollution, including herbicides, is becoming a global problem. Natural products are the prime alternative scientific research as they express better medicinal activity and minor side effects compared with a variety of synthetic drugs. This study was performed to evaluate the nephroprotective proficiency of Arabic gum against butralin-induced nephrotoxicity. Adult female rats were supplemented with Arabic gum (4.3 g/kg b.wt) and/or butralin (312 mg/L) in drinking water for 30 days. The results found that markers of serum kidney function, oxidative stress biomarkers, DNA damage, and expression of kidney specific genes (Acsm2, Ace, and Ace2) as well as histopathological examination in treated rats were conducted. Butralin-treated rats showed a rise in serum creatinine (41%), BUN (47.3%), and MDA (140.9%) as well as decrease in activity of the antioxidant markers (CAT (-21%); GPx (-70.7%); and TAC (43.2%)) in comparison with the control group. In addition, butralin treatment increased the DNA damage (221%); altered the expression levels of Acsm2, Ace, and Ace2 (-51.6%, 141.6%, and 143% respectively); and elevated histopathological lesions in the kidney tissues. Pretreatment of Arabic gum prevented butralin-prompted degenerative changes of kidney tissues. The results suggested that the protective effect provided by Arabic gum on renal tissues exposed to the herbicide butralin could be attributed to enhancement of antioxidants and increase the free radical scavenging activity in vivo.


Subject(s)
Aniline Compounds/toxicity , DNA Damage , Gum Arabic/pharmacology , Kidney Diseases , Kidney/metabolism , Transcriptome , Animals , Female , Gene Expression Regulation/drug effects , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...