Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Br J Pharmacol ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38986570

ABSTRACT

BACKGROUND AND PURPOSE: Maintaining mitochondrial quality is attracting attention as a new strategy to treat diabetes and diabetic complications. We previously reported that mitochondrial hyperfission by forming a protein complex between dynamin-related protein (Drp) 1 and filamin, mediates chronic heart failure and cilnidipine, initially developed as an L/N-type Ca2+ channel blocker, improves heart failure by inhibiting Drp1-filamin protein complex. We investigated whether cilnidipine improves hyperglycaemia of various diabetic mice models. EXPERIMENTAL APPROACH: Retrospective analysis focusing on haemoglobin A1c (HbA1c) was performed in hypertensive and hyperglycaemic patients taking cilnidipine and amlodipine. After developing diabetic mice by streptozotocin (STZ) treatment, an osmotic pump including drug was implanted intraperitoneally, followed by weekly measurements of blood glucose levels. Mitochondrial morphology was analysed by electron microscopy. A Ca2+ channel-insensitive cilnidipine derivative (1,4-dihydropyridine [DHP]) was synthesized and its pharmacological effect was evaluated using obese (ob/ob) mice fed with high-fat diet (HFD). KEY RESULTS: In patients, cilnidipine was superior to amlodipine in HbA1c lowering effect. Cilnidipine treatment improved systemic hyperglycaemia and mitochondrial morphological abnormalities in STZ-exposed mice, without lowering blood pressure. Cilnidipine failed to improve hyperglycaemia of ob/ob mice, with suppressing insulin secretion. 1,4-DHP improved hyperglycaemia and mitochondria abnormality in ob/ob mice fed HFD. 1,4-DHP and cilnidipine improved basal oxygen consumption rate of HepG2 cells cultured under 25 mM glucose. CONCLUSION AND IMPLICATIONS: Inhibition of Drp1-filamin protein complex formation becomes a new strategy for type 2 diabetes treatment.

2.
J Pharmacol Sci ; 155(4): 121-130, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38880546

ABSTRACT

The atrophic myocardium resulting from mechanical unloading and nutritional deprivation is considered crucial as maladaptive remodeling directly associated with heart failure, as well as interstitial fibrosis. Conversely, myocardial hypertrophy resulting from hemodynamic loading is perceived as compensatory stress adaptation. We previously reported the abundant presence of highly redox-active polysulfide molecules, termed supersulfide, with two or more sulfur atoms catenated in normal hearts, and the supersulfide catabolism in pathologic hearts after myocardial infarction correlated with worsened prognosis of heart failure. However, the impact of supersulfide on myocardial remodeling remains unclear. Here, we investigated the involvement of supersulfide metabolism in cardiomyocyte remodeling, using a model of adenosine 5'-triphosphate (ATP) receptor-stimulated atrophy and endothelin-1 receptor-stimulated hypertrophy in neonatal rat cardiomyocytes. Results revealed contrasting changes in intracellular supersulfide and its catabolite, hydrogen sulfide (H2S), between cardiomyocyte atrophy and hypertrophy. Stimulation of cardiomyocytes with ATP decreased supersulfide activity, while H2S accumulation itself did not affect cardiomyocyte atrophy. This supersulfide catabolism was also involved in myofibroblast formation of neonatal rat cardiac fibroblasts. Thus, unraveling supersulfide metabolism during myocardial remodeling may lead to the development of novel therapeutic strategies to improve heart failure.


Subject(s)
Hydrogen Sulfide , Myocytes, Cardiac , Sulfides , Ventricular Remodeling , Animals , Myocytes, Cardiac/metabolism , Sulfides/metabolism , Sulfides/pharmacology , Hydrogen Sulfide/metabolism , Cells, Cultured , Adenosine Triphosphate/metabolism , Rats , Atrophy , Cardiomegaly/metabolism , Cardiomegaly/pathology , Heart Failure/metabolism , Heart Failure/pathology , Animals, Newborn , Rats, Sprague-Dawley
3.
J Pharmacol Sci ; 155(3): 75-83, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38797536

ABSTRACT

Sulfur-based redox signaling has long attracted attention as critical mechanisms underlying the development of cardiac diseases and resultant heart failure. Especially, post-translational modifications of cysteine (Cys) thiols in proteins mediate oxidative stress-dependent cardiac remodeling including myocardial hypertrophy, senescence, and interstitial fibrosis. However, we recently revealed the existence of Cys persulfides and Cys polysulfides in cells and tissues, which show higher redox activities than Cys and substantially contribute to redox signaling and energy metabolism. We have established simple evaluation methods that can detect polysulfides in proteins and inorganic polysulfides in cells and revealed that polysulfides abundantly expressed in normal hearts are dramatically catabolized by exposure to ischemic/hypoxic and environmental electrophilic stress, which causes vulnerability of the heart to mechanical load. Accumulation of hydrogen sulfide, a nucleophilic catabolite of persulfides/polysulfides, may lead to reductive stress in ischemic hearts, and perturbation of polysulfide catabolism can improve chronic heart failure after myocardial infarction in mice. This review focuses on the (patho)physiological role of sulfur metabolism in hearts, and proposes that sulfur catabolism during ischemic/hypoxic stress has great potential as a new therapeutic strategy for the treatment of ischemic heart failure.


Subject(s)
Cysteine , Heart Failure , Hydrogen Sulfide , Oxidation-Reduction , Sulfides , Sulfur , Heart Failure/metabolism , Animals , Humans , Sulfides/metabolism , Sulfur/metabolism , Hydrogen Sulfide/metabolism , Cysteine/metabolism , Oxidative Stress , Signal Transduction , Protein Processing, Post-Translational , Mice , Molecular Targeted Therapy , Energy Metabolism , Myocardium/metabolism
4.
Int J Mol Sci ; 25(10)2024 May 17.
Article in English | MEDLINE | ID: mdl-38791484

ABSTRACT

Lipid droplet (LD) accumulation in hepatocytes is one of the major symptoms associated with fatty liver disease. Mitochondria play a key role in catabolizing fatty acids for energy production through ß-oxidation. The interplay between mitochondria and LD assumes a crucial role in lipid metabolism, while it is obscure how mitochondrial morphology affects systemic lipid metabolism in the liver. We previously reported that cilnidipine, an already existing anti-hypertensive drug, can prevent pathological mitochondrial fission by inhibiting protein-protein interaction between dynamin-related protein 1 (Drp1) and filamin, an actin-binding protein. Here, we found that cilnidipine and its new dihydropyridine (DHP) derivative, 1,4-DHP, which lacks Ca2+ channel-blocking action of cilnidipine, prevent the palmitic acid-induced Drp1-filamin interaction, LD accumulation and cytotoxicity of human hepatic HepG2 cells. Cilnidipine and 1,4-DHP also suppressed the LD accumulation accompanied by reducing mitochondrial contact with LD in obese model and high-fat diet-fed mouse livers. These results propose that targeting the Drp1-filamin interaction become a new strategy for the prevention or treatment of fatty liver disease.


Subject(s)
Dihydropyridines , Dynamins , Lipid Droplets , Liver , Animals , Dynamins/metabolism , Humans , Lipid Droplets/metabolism , Lipid Droplets/drug effects , Mice , Hep G2 Cells , Liver/metabolism , Liver/drug effects , Liver/pathology , Dihydropyridines/pharmacology , Mitochondria/metabolism , Mitochondria/drug effects , Lipid Metabolism/drug effects , Male , Mitochondrial Dynamics/drug effects , Mice, Inbred C57BL , Diet, High-Fat/adverse effects , Hepatocytes/metabolism , Hepatocytes/drug effects
5.
J Biochem ; 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38507681

ABSTRACT

Morphological and structural remodeling of the heart, including cardiac hypertrophy and fibrosis, has been considered a therapeutic target for heart failure for approximately three decades. Groundbreaking heart failure medications demonstrating reverse remodeling effects have contributed significantly to medical advancements. However, nearly 50% of heart failure patients still exhibit drug resistance, posing a challenge to the healthcare system. Recently, characteristics of heart failure resistant to ARBs and ß-blockers have been defined, highlighting preserved systolic function despite impaired diastolic function, leading to the classification of heart failure with preserved ejection fraction (HFpEF). The pathogenesis and etiology of HFpEF may be related to metabolic abnormalities, as evidenced by its mimicry through endothelial dysfunction and excessive intake of high-fat diets. Our recent findings indicate a significant involvement of mitochondrial hyper-fission in the progression of heart failure. This mitochondrial pathological remodeling is associated with redox imbalance, especially hydrogen sulfide accumulation due to abnormal electron leak in myocardium. In this review, we also introduce a novel therapeutic strategy for heart failure from the current perspective of mitochondrial redox-metabolic remodeling.

6.
Front Sports Act Living ; 6: 1322295, 2024.
Article in English | MEDLINE | ID: mdl-38348376

ABSTRACT

Introduction: We aimed to determine the effects of exercise on cell-free DNA (cfDNA) levels and concentration changes during the menstrual cycle in participants with regular menstrual cycles and no exercise habits. Methods: Eleven sedentary female students with regular menstrual cycles and ovulation performed bicycle exercises at 60% VO2max for 30 min during the menstrual, ovulatory, and luteal phases. Blood samples were collected before (Pre), immediately after (Post 0), 30 min after (Post 30), and 60 min after (Post 60) exercise. Blood concentrations of ovarian hormones, cfDNA, prostaglandin F2a (PGF2α), interleukin-6 (IL-6), and aromatase were evaluated. Results: Based on the concentration of ovarian hormones, seven individuals were finally analyzed. No significant phase difference was observed in cfDNA across all time points. cfDNA (menstrual phase: p = 0.028, ovulatory phase: p = 0.018, and luteal phase: p = 0.048) and aromatase concentrations (menstrual phase: p = 0.040, ovulatory phase: p = 0.039, and luteal phase: p = 0.045) significantly increased from Pre to Post 0 in all phases. Serum estradiol (E2) levels were significantly higher in the luteal phase at all time points than in the menstrual phase (Pre: p < 0.001, Post 0: p < 0.001, Post 30: p = 0.005, and Post 60: p = 0.011); however, serum progesterone (P4) levels were significantly higher in the luteal phase at all time points than in the menstrual (Pre: p < 0.001, Post 0: p < 0.001, Post 30: p < 0.001, and Post 60: p < 0.001) and ovulatory phases (Pre: p = 0.005, Post 0: p = 0.005, Post 30: p = 0.003, and Post 60: p = 0.003). E2 levels significantly increased from Pre to Post 0 in the ovulatory and luteal phases, whereas P4 levels increased in the luteal phase. Progesterone to estradiol level ratio (P4/E2) changes from Pre to Post 0 (%baseline) during the luteal phase were significantly negatively correlated (r = -0.82, p = 0.046) with the changes in cfDNA from Pre to Post 0. Furthermore, the repeated measures correlation between P4/E2 and cfDNA level showed a significant negative correlation in ovulatory and luteal phases. Discussion: The results indicate that while resting cfDNA levels are unlikely to be affected by a woman's menstrual cycle, the increase in cfDNA after exercise is higher in the ovulatory phase (when only E2 increases) and lower in the luteal phase (when E2 and P4 increase with exercise) compared to that in the menstrual phase (when E2 and P4 are in low levels), suggesting the contribution of increased ovarian hormone levels after exercise.

7.
Int J Mol Sci ; 25(4)2024 Feb 18.
Article in English | MEDLINE | ID: mdl-38397074

ABSTRACT

We recently reported that transient receptor potential canonical (TRPC) 6 channel activity contributes to intracellular Zn2+ homeostasis in the heart. Zn2+ has also been implicated in the regulation of intestinal redox and microbial homeostasis. This study aims to investigate the role of TRPC6-mediated Zn2+ influx in the stress resistance of the intestine. The expression profile of TRPC1-C7 mRNAs in the actively inflamed mucosa from inflammatory bowel disease (IBD) patients was analyzed using the GEO database. Systemic TRPC3 knockout (KO) and TRPC6 KO mice were treated with dextran sulfate sodium (DSS) to induce colitis. The Zn2+ concentration and the mRNA expression levels of oxidative/inflammatory markers in colon tissues were quantitatively analyzed, and gut microbiota profiles were compared. TRPC6 mRNA expression level was increased in IBD patients and DSS-treated mouse colon tissues. DSS-treated TRPC6 KO mice, but not TRPC3 KO mice, showed severe weight loss and increased disease activity index compared with DSS-treated WT mice. The mRNA abundances of antioxidant proteins were basically increased in the TRPC6 KO colon, with changes in gut microbiota profiles. Treatment with TRPC6 activator prevented the DSS-induced colitis progression accompanied by increasing Zn2+ concentration. We suggest that TRPC6-mediated Zn2+ influx activity plays a key role in stress resistance against IBD, providing a new strategy for treating colitis.


Subject(s)
Inflammatory Bowel Diseases , TRPC6 Cation Channel , Animals , Humans , Mice , Colon/metabolism , Dextran Sulfate/adverse effects , Disease Models, Animal , Inflammatory Bowel Diseases/drug therapy , Inflammatory Bowel Diseases/metabolism , Intestines , Mice, Inbred C57BL , RNA, Messenger/metabolism , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism
8.
J Pharmacol Sci ; 154(2): 127-135, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38246726

ABSTRACT

Smoking is one of the most serious risk factors for cardiovascular diseases. Although cigarette mainstream and sidestream smoke are significant contributors to increased cardiovascular mortality and morbidity, the underlying mechanism is still unclear. Here, we report that exposure of rat neonatal cardiomyocytes to cigarette smoke extract (CSE) induces mitochondrial hyperfission-mediated myocardial senescence. CSE leads to mitochondrial fission and reactive oxygen species (ROS) production through the complex formation between mitochondrial fission factor Drp1 and actin-binding protein, filamin A. Pharmacological perturbation of interaction between Drp1 and filamin A by cilnidipine and gene knockdown of Drp1 or filamin A inhibited CSE-induced mitochondrial hyperfission and ROS production as well as myocardial senescence. We previously reported that Drp1 activity is controlled by supersulfide-induced Cys644 polysulfidation. The redox-sensitive Cys644 was critical for CSE-mediated interaction with filamin A. The administration of supersulfide donor, Na2S3 also improved mitochondrial hyperfission-mediated myocardial senescence induced by CSE. Our results suggest the important role of Drp1-filamin A complex formation on cigarette smoke-mediated cardiac risk and the contribution of supersulfide to mitochondrial fission-associated myocardial senescence.


Subject(s)
Cigarette Smoking , Myocytes, Cardiac , Animals , Rats , Filamins , Mitochondria , Reactive Oxygen Species
9.
Commun Biol ; 6(1): 511, 2023 05 12.
Article in English | MEDLINE | ID: mdl-37173432

ABSTRACT

Remdesivir is an antiviral drug used for COVID-19 treatment worldwide. Cardiovascular side effects have been associated with remdesivir; however, the underlying molecular mechanism remains unknown. Here, we performed a large-scale G-protein-coupled receptor screening in combination with structural modeling and found that remdesivir is a selective, partial agonist for urotensin-II receptor (UTS2R) through the Gαi/o-dependent AKT/ERK axis. Functionally, remdesivir treatment induced prolonged field potential and APD90 in human induced pluripotent stem cell (iPS)-derived cardiomyocytes and impaired contractility in both neonatal and adult cardiomyocytes, all of which mirror the clinical pathology. Importantly, remdesivir-mediated cardiac malfunctions were effectively attenuated by antagonizing UTS2R signaling. Finally, we characterized the effect of 110 single-nucleotide variants in UTS2R gene reported in genome database and found four missense variants that show gain-of-function effects in the receptor sensitivity to remdesivir. Collectively, our study illuminates a previously unknown mechanism underlying remdesivir-related cardiovascular events and that genetic variations of UTS2R gene can be a potential risk factor for cardiovascular events during remdesivir treatment, which collectively paves the way for a therapeutic opportunity to prevent such events in the future.


Subject(s)
Antiviral Agents , COVID-19 , Heart Failure , Induced Pluripotent Stem Cells , Receptors, G-Protein-Coupled , Humans , Infant, Newborn , COVID-19/pathology , COVID-19 Drug Treatment , Heart Failure/pathology , Myocytes, Cardiac , Receptors, G-Protein-Coupled/agonists , Antiviral Agents/pharmacology
10.
Article in English | MEDLINE | ID: mdl-36900972

ABSTRACT

Given the cost-effective nature of promoting desirable behaviors among individuals and societies, national and local governments have widely applied the nudge concept in various public policy fields. This viewpoint briefly explains the concept of nudge and presents the trend of nudge application in public health policy with illustrative examples. While most academic evidence on its effectiveness has been derived from Western countries, there is a significant accumulation of cases of nudge practices in non-Western countries, including the Western Pacific nations. This viewpoint also provides tips for designing nudge interventions. We introduce a simple, three-step procedure for this purpose: (1) identify target behavior, (2) determine friction and fuel of the behavior, and (3) design and implement a nudge-as well as the behavioral process map and the EAST framework.


Subject(s)
Choice Behavior , Health Behavior , Humans , Public Policy , Motivation , Health Policy
11.
Int J Mol Sci ; 24(4)2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36835211

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a disease that progresses from nonalcoholic fatty liver (NAFL) and which is characterized by inflammation and fibrosis. The purinergic P2Y6 receptor (P2Y6R) is a pro-inflammatory Gq/G12 family protein-coupled receptor and reportedly contributes to intestinal inflammation and cardiovascular fibrosis, but its role in liver pathogenesis is unknown. Human genomics data analysis revealed that the liver P2Y6R mRNA expression level is increased during the progression from NAFL to NASH, which positively correlates with inductions of C-C motif chemokine 2 (CCL2) and collagen type I α1 chain (Col1a1) mRNAs. Therefore, we examined the impact of P2Y6R functional deficiency in mice crossed with a NASH model using a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD). Feeding CDAHFD for 6 weeks markedly increased P2Y6R expression level in mouse liver, which was positively correlated with CCL2 mRNA induction. Unexpectedly, the CDAHFD treatment for 6 weeks increased liver weights with severe steatosis in both wild-type (WT) and P2Y6R knockout (KO) mice, while the disease marker levels such as serum AST and liver CCL2 mRNA in CDAHFD-treated P2Y6R KO mice were rather aggravated compared with those of CDAHFD-treated WT mice. Thus, P2Y6R may not contribute to the progression of liver injury, despite increased expression in NASH liver.


Subject(s)
Non-alcoholic Fatty Liver Disease , Receptors, Purinergic P2 , Animals , Humans , Mice , Diet, High-Fat/adverse effects , Disease Models, Animal , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , RNA, Messenger/metabolism , Receptors, Purinergic P2/genetics , Receptors, Purinergic P2/metabolism
12.
Mar Drugs ; 21(1)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36662225

ABSTRACT

Abnormal sulfide catabolism, especially the accumulation of hydrogen sulfide (H2S) during hypoxic or inflammatory stresses, is a major cause of redox imbalance-associated cardiac dysfunction. Polyhydroxynaphtoquinone echinochrome A (Ech-A), a natural pigment of marine origin found in the shells and needles of many species of sea urchins, is a potent antioxidant and inhibits acute myocardial ferroptosis after ischemia/reperfusion, but the chronic effect of Ech-A on heart failure is unknown. Reactive sulfur species (RSS), which include catenated sulfur atoms, have been revealed as true biomolecules with high redox reactivity required for intracellular energy metabolism and signal transduction. Here, we report that continuous intraperitoneal administration of Ech-A (2.0 mg/kg/day) prevents RSS catabolism-associated chronic heart failure after myocardial infarction (MI) in mice. Ech-A prevented left ventricular (LV) systolic dysfunction and structural remodeling after MI. Fluorescence imaging revealed that intracellular RSS level was reduced after MI, while H2S/HS- level was increased in LV myocardium, which was attenuated by Ech-A. This result indicates that Ech-A suppresses RSS catabolism to H2S/HS- in LV myocardium after MI. In addition, Ech-A reduced oxidative stress formation by MI. Ech-A suppressed RSS catabolism caused by hypoxia in neonatal rat cardiomyocytes and human iPS cell-derived cardiomyocytes. Ech-A also suppressed RSS catabolism caused by lipopolysaccharide stimulation in macrophages. Thus, Ech-A has the potential to improve chronic heart failure after MI, in part by preventing sulfide catabolism.


Subject(s)
Heart Failure , Myocardial Infarction , Ventricular Dysfunction, Left , Humans , Mice , Rats , Animals , Myocardial Infarction/drug therapy , Heart Failure/drug therapy , Heart Failure/etiology , Heart Failure/prevention & control , Myocardium/metabolism , Sulfides/metabolism , Ventricular Dysfunction, Left/etiology , Ventricular Dysfunction, Left/prevention & control , Sulfur
13.
Br J Pharmacol ; 180(1): 94-110, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36068079

ABSTRACT

BACKGROUND AND PURPOSE: Capillary arterialization, characterized by the coverage of pre-existing or nascent capillary vessels with vascular smooth muscle cells (VSMCs), is critical for the development of collateral arterioles to improve post-ischaemic blood flow. We previously demonstrated that the inhibition of transient receptor potential 6 subfamily C, member 6 (TRPC6) channels facilitate contractile differentiation of VSMCs under ischaemic stress. We here investigated whether TRPC6 inhibition promotes post-ischaemic blood flow recovery through capillary arterialization in vivo. EXPERIMENTAL APPROACH: Mice were subjected to hindlimb ischaemia by ligating left femoral artery. The recovery rate of peripheral blood flow was calculated by the ratio of ischaemic left leg to non-ischaemic right one. The number and diameter of blood vessels were analysed by immunohistochemistry. Expression and phosphorylation levels of TRPC6 proteins were determined by western blotting and immunohistochemistry. KEY RESULTS: Although the post-ischaemic blood flow recovery is reportedly dependent on endothelium-dependent relaxing factors, systemic TRPC6 deletion significantly promoted blood flow recovery under the condition that nitric oxide or prostacyclin production were inhibited, accompanying capillary arterialization. Cilostazol, a clinically approved drug for peripheral arterial disease, facilitates blood flow recovery by inactivating TRPC6 via phosphorylation at Thr69 in VSMCs. Furthermore, inhibition of TRPC6 channel activity by pyrazole-2 (Pyr2; BTP2; YM-58483) promoted post-ischaemic blood flow recovery in Apolipoprotein E-knockout mice. CONCLUSION AND IMPLICATIONS: Suppression of TRPC6 channel activity in VSMCs could be a new strategy for the improvement of post-ischaemic peripheral blood circulation.


Subject(s)
Transient Receptor Potential Channels , Mice , Animals , Ischemia/metabolism , Myocytes, Smooth Muscle/metabolism , TRPC6 Cation Channel , Mice, Knockout , TRPC Cation Channels/metabolism
14.
Nat Commun ; 13(1): 6374, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289215

ABSTRACT

Baroreflex control of cardiac contraction (positive inotropy) through sympathetic nerve activation is important for cardiocirculatory homeostasis. Transient receptor potential canonical subfamily (TRPC) channels are responsible for α1-adrenoceptor (α1AR)-stimulated cation entry and their upregulation is associated with pathological cardiac remodeling. Whether TRPC channels participate in physiological pump functions remains unclear. We demonstrate that TRPC6-specific Zn2+ influx potentiates ß-adrenoceptor (ßAR)-stimulated positive inotropy in rodent cardiomyocytes. Deletion of trpc6 impairs sympathetic nerve-activated positive inotropy but not chronotropy in mice. TRPC6-mediated Zn2+ influx boosts α1AR-stimulated ßAR/Gs-dependent signaling in rat cardiomyocytes by inhibiting ß-arrestin-mediated ßAR internalization. Replacing two TRPC6-specific amino acids in the pore region with TRPC3 residues diminishes the α1AR-stimulated Zn2+ influx and positive inotropic response. Pharmacological enhancement of TRPC6-mediated Zn2+ influx prevents chronic heart failure progression in mice. Our data demonstrate that TRPC6-mediated Zn2+ influx with α1AR stimulation enhances baroreflex-induced positive inotropy, which may be a new therapeutic strategy for chronic heart failure.


Subject(s)
Heart Failure , TRPC Cation Channels , Rats , Animals , Mice , TRPC6 Cation Channel , TRPC Cation Channels/metabolism , Myocytes, Cardiac/metabolism , Receptors, Adrenergic, beta/metabolism , Receptors, Adrenergic, alpha-1/metabolism , Heart Failure/metabolism , beta-Arrestins/metabolism , Amino Acids/metabolism , Zinc/metabolism
15.
Nihon Yakurigaku Zasshi ; 157(5): 356-360, 2022.
Article in Japanese | MEDLINE | ID: mdl-36047153

ABSTRACT

G protein-coupled receptors (GPCRs) play pivotal roles in converting physicochemical stimuli due to environmental changes to intracellular responses. After ligand stimulation, many GPCRs are desensitized and then recycled or degraded through phosphorylation and ß-arrestin-dependent internalization, an important process to maintain protein quality control of GPCRs. However, it is unknown how GPCRs with low ß-arrestin sensitivity are controlled. Here we unmasked a ß-arrestin-independent GPCR internalization, named Redox-dependent Alternative Internalization (REDAI), focusing on ß-arrestin-resistant purinergic P2Y6 receptor (P2Y6R). P2Y6R is highly expressed in macrophage and pathologically contributes to the development of colitis in mice. Natural electrophiles including in functional foods induce REDAI-mediated P2Y6R degradation leading to anti-inflammation in macrophages. Prevention of Cys220 modification on P2Y6R resulted in aggravation of the colitis. These results strongly suggest that targeting REDAI on GPCRs will be a breakthrough strategy for the prevention and treatment of inflammatory diseases.


Subject(s)
Arrestins , Colitis , Animals , Arrestins/metabolism , Colitis/drug therapy , Drug Discovery , Mice , Phosphorylation , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism
16.
Cells ; 11(13)2022 06 27.
Article in English | MEDLINE | ID: mdl-35805125

ABSTRACT

Retarded revascularization after progressive occlusion of large conductance arteries is a major cause of bad prognosis for peripheral artery disease (PAD). However, pharmacological treatment for PAD is still limited. We previously reported that suppression of transient receptor potential canonical (TRPC) 6 channel activity in vascular smooth muscle cells (VSMCs) facilitates VSMC differentiation without affecting proliferation and migration. In this study, we found that 1-benzilpiperadine derivative (1-BP), a selective inhibitor for TRPC3 and TRPC6 channel activities, induced VSMC differentiation. 1-BP-treated mice showed increased capillary arterialization and improvement of peripheral circulation and skeletal muscle mass after hind-limb ischemia (HLI) in mice. 1-BP had no additive effect on the facilitation of blood flow recovery after HLI in TRPC6-deficient mice, suggesting that suppression of TRPC6 underlies facilitation of the blood flow recovery by 1-BP. 1-BP also improved vascular nitric oxide bioavailability and blood flow recovery after HLI in hypercholesterolemic mice with endothelial dysfunction, suggesting the retrograde interaction from VSMCs to endothelium. These results suggest that 1-BP becomes a potential seed for PAD treatments that target vascular TRPC6 channels.


Subject(s)
Ischemia , Myocytes, Smooth Muscle , TRPC Cation Channels/metabolism , TRPC6 Cation Channel/metabolism , Animals , Arteries , Ischemia/drug therapy , Mice , Muscle, Skeletal
17.
Proc Natl Acad Sci U S A ; 119(30): e2122158119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858418

ABSTRACT

Eicosapentaenoic acid (EPA), an omega-3 (ω-3) polyunsaturated fatty acid, is an essential nutrient that exhibits antiinflammatory, neuroprotective, and cardiovascular-protective activities. Although EPA is used as a nutrient-based pharmaceutical agent or dietary supplement, its molecular target(s) is debatable. Here, we showed that EPA and its metabolites strongly and reversibly inhibit vesicular nucleotide transporter (VNUT), a key molecule for vesicular storage and release of adenosine triphosphate (ATP) in purinergic chemical transmission. In vitro analysis showed that EPA inhibits human VNUT-mediated ATP uptake at a half-maximal inhibitory concentration (IC50) of 67 nM, acting as an allosteric modulator through competition with Cl-. EPA impaired vesicular ATP release from neurons without affecting the vesicular release of other neurotransmitters. In vivo, VNUT-/- mice showed a delay in the onset of neuropathic pain and resistance to both neuropathic and inflammatory pain. EPA potently attenuated neuropathic and inflammatory pain in wild-type mice but not in VNUT-/- mice without affecting the basal nociception. The analgesic effect of EPA was canceled by the intrathecal injection of purinoceptor agonists and was stronger than that of existing drugs used for neuropathic pain treatment, with few side effects. Neuropathic pain impaired insulin sensitivity in previous studies, which was improved by EPA in the wild-type mice but not in the VNUT-/- mice. Our results showed that VNUT is a molecular target of EPA that attenuates neuropathic and inflammatory pain and insulin resistance. EPA may represent a unique nutrient-based treatment and prevention strategy for neurological, immunological, and metabolic diseases by targeting purinergic chemical transmission.


Subject(s)
Eicosapentaenoic Acid , Neuralgia , Nucleotide Transport Proteins , Adenosine Triphosphate/metabolism , Animals , Eicosapentaenoic Acid/pharmacology , Eicosapentaenoic Acid/therapeutic use , Humans , Insulin Resistance , Mice , Neuralgia/drug therapy , Neuralgia/genetics , Nociception , Nucleotide Transport Proteins/antagonists & inhibitors , Nucleotide Transport Proteins/genetics , Nucleotide Transport Proteins/metabolism
18.
J Pharmacol Sci ; 149(3): 108-114, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35641023

ABSTRACT

Coronavirus disease 2019 (COVID-19) remains prevalent worldwide since its onset was confirmed in Wuhan, China in 2019. Vaccines against the causative virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), have shown a preventive effect against the onset and severity of COVID-19, and social and economic activities are gradually recovering. However, the presence of vaccine-resistant variants has been reported, and the development of therapeutic agents for patients with severe COVID-19 and related sequelae remains urgent. Drug repurposing, also called drug repositioning or eco-pharma, is the strategy of using previously approved and safe drugs for a therapeutic indication that is different from their original indication. The risk of severe COVID-19 and mortality increases with advancing age, cardiovascular disease, hypertension, diabetes, and cancer. We have reported three protein-protein interactions that are related to heart failure, and recently identified that one mechanism increases the risk of SARS-CoV-2 infection in mammalian cells. This review outlines the global efforts and outcomes of drug repurposing research for the treatment of severe COVID-19. It also discusses our recent finding of a new protein-protein interaction that is common to COVID-19 aggravation and heart failure.


Subject(s)
COVID-19 Drug Treatment , Heart Failure , Animals , Drug Repositioning , Humans , Mammals , SARS-CoV-2
19.
Nihon Yakurigaku Zasshi ; 157(2): 119-123, 2022.
Article in Japanese | MEDLINE | ID: mdl-35228443

ABSTRACT

Novel coronavirus infection disease 2019 (COVID-19) is an emerging infectious disease that has been rampant worldwide since its onset was confirmed in Wuhan, China in 2019. An effective therapy has not yet been established, and there is an urgent need to establish a breakthrough therapeutic strategy for the prevention and treatment of COVID-19 aggravation. The main route of infection is that the Spike protein (S protein) on the surface of SARS-CoV-2 binds to its recognition receptor, angiotensin converting enzyme (ACE) 2, on the host cell surface. Then, SARS-CoV-2 invades the cell via endocytosis-dependent pathway. Although the major symptom of COVID-19 is lung inflammation, ACE2 is expressed not only in the lungs but also in various tissues including heart and digestive organs. We focused on the molecular mechanism underlying the development of heart failure, a pathology involved in COVID-19 aggravation risk factors and COVID-19 squeals. We revealed that cardiac ACE2 receptors were upregulated by exposure to various environmental stresses reported as COVID-19 aggravation risk factors, and the formation of membrane protein complex between TRPC3 and NADPH oxidase (Nox) 2 that participates in myocardial remodeling underlies pathological ACE2 upregulation. Furthermore, we utilized the already approved drugs that inhibit TRPC3-Nox2 protein complex formation, and identified that clomipramine, a tricyclic antidepressant, has the best potency to suppress ACE2 internalization induced by S protein exposure. This review introduces the mechanism of pathological ACE2 receptor upregulation through TRPC3-Nox2 complex formation in the heart, and the identification of a breakthrough drug candidate using in vitro pseudo-infection screening system.


Subject(s)
COVID-19 Drug Treatment , Humans , SARS-CoV-2
20.
Sci Signal ; 15(716): eabj0644, 2022 01 11.
Article in English | MEDLINE | ID: mdl-35015570

ABSTRACT

After ligand stimulation, many G protein­coupled receptors (GPCRs) undergo ß-arrestin­dependent desensitization, during which they are internalized and either degraded or recycled to the plasma membrane. Some GPCRs are not subject to this type of desensitization because they lack the residues required to interact with ß-arrestins. We identified a mechanism of redox-dependent alternative internalization (REDAI) that promotes the internalization and degradation of the purinergic P2Y6 receptor (P2Y6R). Synthetic and natural compounds containing electrophilic isothiocyanate groups covalently modified P2Y6R at Cys220, which promoted the ubiquitylation of Lys137 and receptor internalization and degradation in various mouse and human cultured cell lines. Endogenous electrophiles also promoted ligand-dependent P2Y6R internalization and degradation. P2Y6R is highly abundant in inflammatory cells and promotes the pathogenesis of colitis. Deficiency in P2Y6R protected mice against experimentally induced colitis, and mice expressing a form of P2Y6R in which Cys220 was mutated to nonmodifiable serine were more sensitive to the induction of colitis. Several other GPCRs, including A2BAR, contain cysteine and lysine residues at the appropriate positions to mediate REDAI, and isothiocyanate stimulated the internalization of A2BAR and of a form of P2Y2R with insertions of the appropriate residues. Thus, endogenous and exogenous electrophiles may limit colitis progression through cysteine modification of P2Y6R and may also mediate internalization of other GPCRs.


Subject(s)
Colitis , Receptors, Purinergic P2 , Animals , Colitis/genetics , Humans , Mice , Oxidation-Reduction , Receptors, Purinergic P2/metabolism , beta-Arrestins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL