Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Article in English | MEDLINE | ID: mdl-38975635

ABSTRACT

OBJECTIVES: The study aimed to assess the mental health and well-being of Lithuanian healthcare workers by gathering demographic information, identifying common stressors affecting the work environment, evaluating mental health, and exploring directions for psychosocial care. Additionally, the research explored the prevalence of considering a career change among respondents. MATERIAL AND METHODS: The study included 1618 responders who completed an online survey in December 2021 - January 2022. Participants included in this study: physicians, nurses, residents and other healthcare workers. It evaluated their demographics, most common stressors affecting their work environment and mental health on the Depression, Anxiety and Stress Scale - 21 (DASS-21) scale. Lastly, all responders asked if they had considered changing their occupation to a non-medical job. Univariate analysis was performed using χ2 and Student's t test, and binary logistic regression evaluated career change predictors. RESULTS: Career change was considered by 1081 (66.8%) responders. The main career change predictors were poor working conditions (OR 1.91, p < 0.001), direct contact with patients (OR 1.84, p < 0.001), lack of career perspectives (OR 1.95, p < 0.001), mobbing (OR 1.67, p = 0.001) and exhaustion (OR 1.51, p = 0.005). After evaluating DASS-21 scores, it was found that 23% of respondents had severe and extremely severe depression symptoms, 27.4% severe and extremely severe anxiety, and 21.4% had severe and extremely severe stress levels. CONCLUSIONS: Lithuanian healthcare workers are in high distress and have poor mental health. They are in need psychosocial assistance to avoid burnout and staff loss. Int J Occup Med Environ Health. 2024;37(3).

2.
Nat Commun ; 15(1): 5282, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902255

ABSTRACT

During pulmonary mucormycosis, inhaled sporangiospores adhere to, germinate, and invade airway epithelial cells to establish infection. We provide evidence that HIF1α plays dual roles in airway epithelial cells during Mucorales infection. We observed an increase in HIF1α protein accumulation and increased expression of many known HIF1α-responsive genes during in vitro infection, indicating that HIF1α signaling is activated by Mucorales infection. Inhibition of HIF1α signaling led to a substantial decrease in the ability of R. delemar to invade cultured airway epithelial cells. Transcriptome analysis revealed that R. delemar infection induces the expression of many pro-inflammatory genes whose expression was significantly reduced by HIF1α inhibition. Importantly, pharmacological inhibition of HIF1α increased survival in a mouse model of pulmonary mucormycosis without reducing fungal burden. These results suggest that HIF1α plays two opposing roles during mucormycosis: one that facilitates the ability of Mucorales to invade the host cells and one that facilitates the ability of the host to mount an innate immune response.


Subject(s)
Epithelial Cells , Hypoxia-Inducible Factor 1, alpha Subunit , Mucorales , Mucormycosis , Mucormycosis/microbiology , Mucormycosis/metabolism , Mucormycosis/immunology , Animals , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mucorales/metabolism , Mucorales/genetics , Humans , Epithelial Cells/metabolism , Epithelial Cells/microbiology , Mice , Signal Transduction , Mice, Inbred C57BL , Disease Models, Animal , Lung/microbiology , Lung/immunology , Lung/metabolism , Lung/pathology , Female , Gene Expression Profiling
3.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791119

ABSTRACT

SARS-CoV-2 is the pathogen responsible for the most recent global pandemic, which has claimed hundreds of thousands of victims worldwide. Despite remarkable efforts to develop an effective vaccine, concerns have been raised about the actual protection against novel variants. Thus, researchers are eager to identify alternative strategies to fight against this pathogen. Like other opportunistic entities, a key step in the SARS-CoV-2 lifecycle is the maturation of the envelope glycoprotein at the RARR685↓ motif by the cellular enzyme Furin. Inhibition of this cleavage greatly affects viral propagation, thus representing an ideal drug target to contain infection. Importantly, no Furin-escape variants have ever been detected, suggesting that the pathogen cannot replace this protease by any means. Here, we designed a novel fluorogenic SARS-CoV-2-derived substrate to screen commercially available and custom-made libraries of small molecules for the identification of new Furin inhibitors. We found that a peptide substrate mimicking the cleavage site of the envelope glycoprotein of the Omicron variant (QTQTKSHRRAR-AMC) is a superior tool for screening Furin activity when compared to the commercially available Pyr-RTKR-AMC substrate. Using this setting, we identified promising novel compounds able to modulate Furin activity in vitro and suitable for interfering with SARS-CoV-2 maturation. In particular, we showed that 3-((5-((5-bromothiophen-2-yl)methylene)-4-oxo-4,5 dihydrothiazol-2-yl)(3-chloro-4-methylphenyl)amino)propanoic acid (P3, IC50 = 35 µM) may represent an attractive chemical scaffold for the development of more effective antiviral drugs via a mechanism of action that possibly implies the targeting of Furin secondary sites (exosites) rather than its canonical catalytic pocket. Overall, a SARS-CoV-2-derived peptide was investigated as a new substrate for in vitro high-throughput screening (HTS) of Furin inhibitors and allowed the identification of compound P3 as a promising hit with an innovative chemical scaffold. Given the key role of Furin in infection and the lack of any Food and Drug Administration (FDA)-approved Furin inhibitor, P3 represents an interesting antiviral candidate.


Subject(s)
Furin , SARS-CoV-2 , Small Molecule Libraries , Furin/antagonists & inhibitors , Furin/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , Humans , Small Molecule Libraries/pharmacology , Small Molecule Libraries/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , COVID-19/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Drug Evaluation, Preclinical/methods
4.
Antimicrob Agents Chemother ; : e0020524, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687014

ABSTRACT

Ventilator-associated bacterial pneumonia (VABP) is among the most intractable of carbapenem-resistant Gram-negative bacterial infections. New antimicrobial agents are critically needed for the treatment of VABP. However, current conventionally used animal model systems are inadequate to meet this challenge. We, therefore, developed rabbit models of VABP caused by carbapenem-resistant Pseudomonas aeruginosa. Persistently neutropenic New Zealand White rabbits were used throughout the study. The early-phase intubated model (0-24 h) received mechanical ventilation, while the late-phase intubated model (72-96 h) was ambulatory. The following outcome parameters were studied: survival, residual tissue bacterial burden (CFU/g), residual BAL bacterial burden (CFU/mL), lung weights, pulmonary lesion score, histology, O2 saturation, radiographic imaging, and histology. Each anesthetized rabbit received a predetermined endotracheal bacterial inoculum, and ventilators were set to FiO2 = 40% and PEEP = 8 mmHg. Within the first 12 h post-inoculation, mean bacterial burdens in lung tissue and BAL fluid, respectively, were established at approximately 107 CFU/g and 106 CFU/mL, persisted through 24 h in the early-phase model and increased in the late-phase model to approximately 108 CFU/g and 107 CFU/mL. Mean max SpO2 was ≥98 mmHg, and mean nadir SpO2 was ≥68 mmHg. Serial thoracic radiographs demonstrated progressive multilobar pneumonic infiltrates. Lung histology revealed progressive focal bronchopneumonia, coagulative necrosis, intra-alveolar hemorrhage, alveolar epithelial cell necrosis, and bacterial microcolonies. The new rabbit model of VABP produced by carbapenem-resistant Pseudomonas aeruginosa recapitulates the pathophysiological, microbiological, diagnostic imaging, and histological patterns of human disease by which to assess critically needed new antimicrobial agents against this lethal infection.

5.
PLoS One ; 19(3): e0300380, 2024.
Article in English | MEDLINE | ID: mdl-38517855

ABSTRACT

Antimicrobial resistance (AMR) represents an alarming global challenge to public health. Infections caused by multidrug-resistant Staphylococcus aureus (S. aureus) pose an emerging global threat. Therefore, it is crucial to develop novel compounds with promising antimicrobial activity against S. aureus especially those with challenging resistance mechanisms and biofilm formation. Series of bis(thiazol-5-yl)phenylmethane derivatives were evaluated against drug-resistant Gram-positive bacteria. The screening revealed an S. aureus-selective mechanism of bis(thiazol-5-yl)phenylmethane derivatives (MIC 2-64 µg/mL), while significantly lower activity was observed with vancomycin-resistant Enterococcus faecalis (MIC 64 µg/mL) (p<0.05). The most active phenylmethane-based (p-tolyl) derivative, 23a, containing nitro and dimethylamine substituents, and the naphthalene-based derivative, 28b, harboring fluorine and nitro substituents, exhibited strong, near MIC bactericidal activity against S. aureus with genetically defined resistance phenotypes such as MSSA, MRSA, and VRSA and their biofilms. The in silico modeling revealed that most promising compounds 23a and 28b were predicted to bind S. aureus MurC ligase. The 23a and 28b formed bonds with MurC residues at binding site, specifically Ser12 and Arg375, indicating consequential interactions essential for complex stability. The in vitro antimicrobial activity of compound 28b was not affected by the addition of 50% serum. Finally, all tested bis(thiazol-5-yl)phenylmethane derivatives showed favorable cytotoxicity profiles in A549 and THP-1-derived macrophage models. These results demonstrated that bis(thiazol-5-yl)phenylmethane derivatives 23a and 28b could be potentially explored as scaffolds for the development of novel candidates targeting drug-resistant S. aureus. Further studies are also warranted to understand in vivo safety, efficacy, and pharmacological bioavailability of bis(thiazol-5-yl)phenylmethane derivatives.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/microbiology , Gram-Positive Bacteria , Microbial Sensitivity Tests
6.
Antibiotics (Basel) ; 13(2)2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38391579

ABSTRACT

Infections caused by multidrug-resistant bacterial and fungal pathogens represent a significant global health concern, contributing to increased morbidity and mortality rates. Therefore, it is crucial to develop novel compounds targeting drug-resistant microbial strains. Herein, we report the synthesis of amino acid derivatives bearing an incorporated 4-hydroxyphenyl moiety with various substitutions. The resultant novel 3-((4-hydroxyphenyl)amino)propanoic acid derivatives 2-37 exhibited structure-dependent antimicrobial activity against both ESKAPE group bacteria and drug-resistant Candida species. Furthermore, these derivatives demonstrated substantial activity against Candida auris, with minimum inhibitory concentrations ranging from 0.5 to 64 µg/mL. Hydrazones 14-16, containing heterocyclic substituents, showed the most potent and broad-spectrum antimicrobial activity. This activity extended to methicillin-resistant Staphylococcus aureus (MRSA) with MIC values ranging from 1 to 8 µg/mL, vancomycin-resistant Enterococcus faecalis (0.5-2 µg/mL), Gram-negative pathogens (MIC 8-64 µg/mL), and drug-resistant Candida species (MIC 8-64 µg/mL), including Candida auris. Collectively, these findings underscore the potential utility of the novel 3-((4-hydroxyphenyl)amino)propanoic acid scaffold for further development as a foundational platform for novel antimicrobial agents targeting emerging and drug-resistant bacterial and fungal pathogens.

7.
Vet Sci ; 10(8)2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37624306

ABSTRACT

Bovine colostrum (COL), the first milk secreted by lactating cows postpartum, is a rich source of bioactive compounds that exert a significant role in the survival, growth, and immune development of neonatal calves. This study investigated the immunomodulatory effects of COL on cytokine production in vitro using a Caco-2/THP-1 macrophage co-culture model stimulated with Phorbol 12-myristate 13-acetate (PMA). COL pretreatment significantly reduced IL-6 (241.3 pg/mL) production induced by PMA (p < 0.05), while increasing IL-10 production (45.3 pg/mL), in comparison to PMA control (441.1 and 12.5 pg/mL, respectively). Further investigations revealed that the IL-6 suppressive effect of colostrum was heat-sensitive and associated with components of higher molecular mass (100 kDa). Moreover, colostrum primarily influenced THP-1 macrophages rather than Caco-2 epithelial cells. The effects of colostrum on IL-6 production were associated with reduced NF-κB activation in THP-1 macrophages. In calf-FMT transplanted C57BL/6 murine model, colostrum decreased intestinal permeability, reduced immune cell infiltration and intestinal score, and suppressed IL-6 (142.0 pg/mL) production during S. typhimurium infection, in comparison to control animals (215.2 pg/mL). These results suggest the immunomodulatory activity of bovine colostrum and its potential applications in inflammatory disorders. Further studies are needed to elucidate the underlying mechanisms and validate the findings in bovine models.

8.
Int J Mol Sci ; 24(9)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37175673

ABSTRACT

Increasing antimicrobial resistance among Gram-positive pathogens and pathogenic fungi remains one of the major public healthcare threats. Therefore, novel antimicrobial candidates and scaffolds are critically needed to overcome resistance in Gram-positive pathogens and drug-resistant fungal pathogens. In this study, we explored 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid and its 3,5-dichloro-2-hydroxyphenyl analogue for their in vitro antimicrobial activity against multidrug-resistant pathogens. The compounds showed structure-dependent antimicrobial activity against Gram-positive pathogens (S. aureus, E. faecalis, C. difficile). Compounds 14 and 24b showed promising activity against vancomycin-intermediate S. aureus strains, and favorable cytotoxic profiles in HSAEC-1 cells, making them attractive scaffolds for further development. 5-Fluorobenzimidazole, having a 3,5-dichloro-2-hydroxyphenyl substituent, was found to be four-fold, and hydrazone, with a thien-2-yl fragment, was two-fold stronger than clindamycin against methicillin resistant S. aureus TCH 1516. Moreover, hydrazone, bearing a 5-nitrothien-2-yl moiety, showed promising activity against three tested multidrug-resistant C. auris isolates representing major genetic lineages (MIC 16 µg/mL) and azole-resistant A. fumigatus strains harboring TR34/L98H mutations in the CYP51A gene. The anticancer activity characterization demonstrated that the 5-fluorobenzimidazole derivative with a 3,5-dichloro-2-hydroxyphenyl substituent showed the highest anticancer activity in an A549 human pulmonary cancer cell culture model. Collectively these results demonstrate that 1-(2-hydroxyphenyl)-5-oxopyrrolidine-3-carboxylic acid derivatives could be further explored for the development of novel candidates targeting Gram-positive pathogens and drug-resistant fungi.


Subject(s)
Anti-Infective Agents , Antineoplastic Agents , Clostridioides difficile , Methicillin-Resistant Staphylococcus aureus , Humans , Staphylococcus aureus , Anti-Infective Agents/pharmacology , Fungi , Anti-Bacterial Agents/pharmacology , Carboxylic Acids , Antineoplastic Agents/pharmacology , Microbial Sensitivity Tests
9.
Microorganisms ; 11(4)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37110358

ABSTRACT

Infections caused by drug-resistant (DR) Mycobacterium abscessus (M. abscessus) complex (MAC) are an important public health concern, particularly when affecting individuals with various immunodeficiencies or chronic pulmonary diseases. Rapidly growing antimicrobial resistance among MAC urges us to develop novel antimicrobial candidates for future optimization. Therefore, we have designed and synthesized benzenesulfonamide-bearing functionalized imidazole or S-alkylated derivatives and evaluated their antimicrobial activity using multidrug-resistant M. abscessus strains and compared their antimycobacterial activity using M. bovis BCG and M. tuberculosis H37Ra. Benzenesulfonamide-bearing imidazole-2-thiol compound 13, containing 4-CF3 substituent in benzene ring, showed strong antimicrobial activity against the tested mycobacterial strains and was more active than some antibiotics used as a reference. Furthermore, an imidazole-bearing 4-F substituent and S-methyl group demonstrated good antimicrobial activity against M. abscessus complex strains, as well as M. bovis BCG and M. tuberculosis H37Ra. In summary, these results demonstrated that novel benzenesulfonamide derivatives, bearing substituted imidazoles, could be further explored as potential candidates for the further hit-to-lead optimization of novel antimycobacterial compounds.

10.
Antibiotics (Basel) ; 12(2)2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36830130

ABSTRACT

The growing antimicrobial resistance to last-line antimicrobials among Gram-positive pathogens remains a major healthcare emergency worldwide. Therefore, the search for new small molecules targeting multidrug-resistant pathogens remains of great importance. In this paper, we report the synthesis and in vitro antimicrobial activity characterisation of novel thiazole derivatives using representative Gram-negative and Gram-positive strains, including tedizolid/linezolid-resistant S. aureus, as well as emerging fungal pathogens. The 4-substituted thiazoles 3h, and 3j with naphthoquinone-fused thiazole derivative 7 with excellent activity against methicillin and tedizolid/linezolid-resistant S. aureus. Moreover, compounds 3h, 3j and 7 showed favourable activity against vancomycin-resistant E. faecium. Compounds 9f and 14f showed broad-spectrum antifungal activity against drug-resistant Candida strains, while ester 8f showed good activity against Candida auris which was greater than fluconazole. Collectively, these data demonstrate that N-2,5-dimethylphenylthioureido acid derivatives could be further explored as novel scaffolds for the development of antimicrobial candidates targeting Gram-positive bacteria and drug-resistant pathogenic fungi.

11.
Vet Sci ; 10(2)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36851432

ABSTRACT

Bovine colostrum (BC) is the first milk produced by lactating cows after parturition. BC is rich in various amino acids, proteins, and fats essential for the nutrition of the neonate calves. Despite the evident beneficial effect of BC on calves, the effect of BC on blood biomarkers is poorly understood. Calves that received BC showed significantly higher body mass at days 7 and 30 (38.54 kg and 43.42 kg, respectively) compared to the colostrum replacer group (p = 0.0064). BC induced greater quantities of blood neutrophils (0.27 × 109/L) and monocytes (4.76 × 109/L) in comparison to the colostrum replacer (0.08 and 0.06 × 109/L, respectively) (p = 0.0001). Animals that received BC showed higher levels of total serum protein (59.16 g/L) and albumin (29.96 g/L) in comparison to the colostrum replacer group (44.34 g/L and 31.58 g/L, respectively). In addition, BC induced greater intestinal mucus production in the Wistar rat model. Collectively, these results demonstrate that BC is important for the growth of calves and that it provides a significant beneficial effect on morphological and biochemical blood parameters.

12.
Antimicrob Agents Chemother ; 66(10): e0061822, 2022 10 18.
Article in English | MEDLINE | ID: mdl-36154614

ABSTRACT

Stenotrophomonas maltophilia is an important cause of pneumonia in immunocompromised patients. Cefiderocol is a parenteral siderophore cephalosporin with potent in vitro activity against S. maltophilia. We evaluated the efficacy of cefiderocol in a neutropenic rabbit model of S. maltophilia pneumonia in comparison to trimethoprim-sulfamethoxazole (TMP-SMX). The cefiderocol area under the plasma drug concentration-time curve extrapolated to 8 h (AUC0-8) was lower (423.0 ± 40.9 µg·h/mL versus 713.6 ± 40.1 µg·h/mL) and clearance higher (252.77 ± 38.9 mL/h/kg versus 142.6 ± 32.9 mL/h/kg) in infected versus noninfected rabbits. We studied a clinical bloodstream S. maltophilia isolate with an MIC of 0.03 µg/mL of cefiderocol. Time spent above the MIC of cefiderocol for the majority of S. maltophilia isolates in rabbits recapitulated the plasma concentration-time profile observed in adult humans at the licensed dose of 2 g given intravenously (i.v.). Experimental groups consisted of 120 mg/kg cefiderocol i.v. every 8 hours (q8h); TMP-SMX, 5 mg/kg i.v. Q12h, and untreated controls (UCs). Treatment was administered for 10 days. Survival in cefiderocol-treated rabbits (87%) was greater than that in TMP-SMX-treated (25%; P < 0.05) and UC (0%; P < 0.05) groups. There was no residual bacterial burden in lung tissue or bronchoalveolar lavage (BAL) fluid in the cefiderocol group. Residual bacterial burden was present in lung tissue and BAL fluid in the TMP-SMX group but was decreased in comparison to UCs (P < 0.001). Lung weights (markers of pulmonary injury) were decreased in cefiderocol-treated versus TMP-SMX (P < 0.001) and UC (P < 0.001) groups. Cefiderocol is highly active in treatment of experimental S. maltophilia pneumonia, laying the foundation for future clinical investigations against this lethal infection in immunocompromised patients.


Subject(s)
Gram-Negative Bacterial Infections , Pneumonia , Stenotrophomonas maltophilia , Humans , Adult , Animals , Rabbits , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use , Siderophores/therapeutic use , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Cephalosporins/pharmacology , Cephalosporins/therapeutic use , Pneumonia/drug therapy , Gram-Negative Bacterial Infections/drug therapy , Microbial Sensitivity Tests , Cefiderocol
13.
Pathogens ; 11(9)2022 Sep 17.
Article in English | MEDLINE | ID: mdl-36145492

ABSTRACT

Streptococcus agalactiae (Group B Streptococcus, GBS) is a leading cause of neonatal infections. Yet, detailed assessment of the genotypic and phenotypic factors associated with GBS carriage, mother-to-baby transmission, and GBS infection in neonates and adults is lacking. Understanding the distribution of GBS genotypes, including the predominance of different serotypes, antimicrobial resistance (AMR) genes, and virulence factors, is likely to help to prevent GBS diseases, as well as inform estimates of the efficacy of future GBS vaccines. To this end, we set out to characterise GBS isolates collected from pregnant and non-pregnant women in Kaunas region in Lithuania. Whole genome sequences of 42 GBS isolates were analysed to determine multi-locus sequence typing (MLST), the presence of acquired AMR and surface protein genes, and the phylogenetic relatedness of isolates. We identified serotypes Ia (42.9%, 18/42), III (33.3%, 14/42), V (21.4%, 9/42), and a single isolate of serotype Ib. Genomic analyses revealed high diversity among the isolates, with 18 sequence types (STs) identified, including three novel STs. 85.7% (36/42) of isolates carried at least one AMR gene: tetM or tetO (35/42), ermB or lsaC (8/42) and ant6-Ia and aph3-III (2/42). This study represents the first genomic analysis of GBS isolated from women in Lithuania and contributes to an improved understanding of the global spread of GBS genotypes and phenotypes, laying the foundations for future GBS surveillance in Lithuania.

14.
J Clin Med ; 11(16)2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36012991

ABSTRACT

Our goal was to assess the rate of symptoms commonly included in LARS score in a large general population. The study was based on a population-based design. We disseminated LARS scores through community online platforms and general practitioners throughout Lithuania. We received 8183 responses to the questionnaire. There were 142 (1.74%) participants who were excluded for lack of information. There were 6100 (75.9%) females and 1941 (24.1%) males. After adjusting for sex and age, male participants had a significant average score of 18.4 (SD ± 10.35) and female 20.3 (SD ± 9.74) p < 0.001. There were 36.4% of participants who had minor LARS symptoms, and 14.2% who had major LARS symptoms. Overall, major LARS-related symptoms were significantly related to previous operations: 863 participants in the operated group (71.7%), and 340 in the non-operated group (28.3%; p0.001). In 51−75-year-old patients, major LARS was significantly more prevalent with 22.7% (p < 0.001) and increasing with age, with a higher incidence of females after the age of 75. After excluding colorectal and perineal procedures, the results of multivariate logistic regression analysis indicated the use of neurological drugs and gynaecological operations were independent risk factors for major LARS−odd ratio of 1.6 (p = 0.018, SI 1.2−2.1) and 1.28 (p = 0.018, SI 1.07−1.53), respectively. The symptoms included in the LARS score are common in the general population, and there is a variety of factors that influence this, including previous surgeries, age, sex, comorbidities, and medication. These factors should be considered when interpreting the LARS score following low anterior resection and when considering treatment options preoperatively.

15.
Pharmaceuticals (Basel) ; 15(8)2022 Aug 06.
Article in English | MEDLINE | ID: mdl-36015119

ABSTRACT

The 1-(4-acetamidophenyl)-5-oxopyrrolidine carboxylic acid was applied for synthesizing derivatives bearing azole, diazole, and hydrazone moieties in the molecule. Modification of an acetamide fragment to the free amino group afforded compounds with two functional groups, which enabled to provide a series of 4-substituted-1-(4-substituted phenyl)pyrrolidine-2-ones. The resulted compounds 2 and 4-22 were subjected to the in vitro anticancer and antimicrobial activity determination. The compounds 18-22 exerted the most potent anticancer activity against A549 cells. Furthermore, compound 21 bearing 5-nitrothiophene substituents demonstrated promising and selective antimicrobial activity against multidrug-resistant Staphylococcus aureus strains, including linezolid and tedizolid-resistant S. aureus. These results demonstrate that 5-oxopyrolidine derivatives are attractive scaffolds for the further development of anticancer and antimicrobial compounds targeting multidrug-resistant Gram-positive pathogens.

16.
Antimicrob Agents Chemother ; 66(9): e0052722, 2022 09 20.
Article in English | MEDLINE | ID: mdl-35924913

ABSTRACT

Metallo-ß-lactamase (MBL)-producing Gram-negative bacteria cause infections associated with high rates of morbidity and mortality. Currently, a leading regimen to treat infections caused by MBL-producing bacteria is aztreonam combined with ceftazidime-avibactam. The purpose of the present study was to evaluate and rationally optimize the combination of aztreonam and ceftazidime-avibactam with and without polymyxin B against a clinical Klebsiella pneumoniae isolate producing NDM-1 and CTX-M by use of the hollow fiber infection model (HFIM). A novel de-escalation approach to polymyxin B dosing was also explored, whereby a standard 0-h loading dose was followed by maintenance doses that were 50% of the typical clinical regimen. In the HFIM, the addition of polymyxin B to aztreonam plus ceftazidime-avibactam significantly improved bacterial killing, leading to eradication, including for the novel de-escalation dosing strategy. Serial samples from the growth control and monotherapies were explored in a Galleria mellonella virulence model to assess virulence changes. Weibull regression showed that low-level ceftazidime resistance and treatment with monotherapy resulted in increased G. mellonella mortality (P < 0.05). A neutropenic rabbit pneumonia model demonstrated that aztreonam plus ceftazidime-avibactam with or without polymyxin B resulted in similar bacterial killing, and these combination therapies were statistically significantly better than monotherapies (P < 0.05). However, only the polymyxin B-containing combination therapy produced a statistically significant decrease in lung weights (P < 0.05), indicating a decreased inflammatory process. Altogether, adding polymyxin B to the combination of aztreonam plus ceftazidime-avibactam for NDM- and CTX-M-producing K. pneumoniae improved bacterial killing effects, reduced lung inflammation, suppressed resistance amplification, and limited virulence changes.


Subject(s)
Ceftazidime , Klebsiella pneumoniae , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Azabicyclo Compounds/pharmacology , Azabicyclo Compounds/therapeutic use , Aztreonam/pharmacology , Ceftazidime/pharmacology , Ceftazidime/therapeutic use , Cell Wall/metabolism , Drug Combinations , Klebsiella/metabolism , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Rabbits , beta-Lactamases/metabolism
17.
J Clin Med ; 11(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35807066

ABSTRACT

The aim of this study was to report overall experience, perioperative and long-term survival results in a single tertiary referral center in Lithuania with hand assisted laparoscopic surgery (HALS) for colorectal cancer. A prospectively maintained database included 467 patients who underwent HALS for left-sided colon and rectal cancer, from April 2006 to October 2016. All those operations were performed by three consultant surgeons and nine surgical residents, in all cases assisted by one of the same consultant surgeons. There were 230 (49.25%) females, with an average age of 64 ± 9.7 years (range, 26-91 years). The procedures performed included 170 (36.4%) anterior rectal resections with partial mesorectal excision, 160 (34.26%) sigmoid colectomies, 81 (17.35%) left hemicolectomies, 45 (9.64%) low anterior rectal resections with total mesorectal excision, and 11 (2.25%) other procedures. Stage I colorectal cancer was found in 140 (29.98%) patients, 139 (29.76%) stage II, 152 (32.55%) stage III and 36 (7.71%) stage IV. There were five conversions to open surgery (1.1%). The mean postoperative hospital stay was 6.9 ± 3.4 days (range, 1-30 days). In total, 33 (7.06%) patients developed postoperative complications. The most common complications were small bowel obstruction (n = 6), anastomotic leakage (n = 5), intraabdominal abscess (n = 4) and dysuria (n = 4). There were two postoperative deaths (0.43%). Overall, 5-year survival for all TNM stages was 85.7%, 93.2% for stage I, 88.5% for stage II and 76.3% for stage III. Hand assisted colorectal surgery for left-sided colon and rectal cancer in a single tertiary referral center was feasible and safe, having all the advantages of minimally invasive surgery, with good perioperative parameters, adequate oncological quality and excellent survival.

18.
Int J Mol Sci ; 23(14)2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35887038

ABSTRACT

It is well-known that thiazole derivatives are usually found in lead structures, which demonstrate a wide range of pharmacological effects. The aim of this research was to explore the antiviral, antioxidant, and antibacterial activities of novel, substituted thiazole compounds and to find potential agents that could have biological activities in one single biomolecule. A series of novel aminothiazoles were synthesized, and their biological activity was characterized. The obtained results were compared with those of the standard antiviral, antioxidant, antibacterial and anticancer agents. The compound bearing 4-cianophenyl substituent in the thiazole ring demonstrated the highest cytotoxic properties by decreasing the A549 viability to 87.2%. The compound bearing 4-trifluoromethylphenyl substituent in the thiazole ring showed significant antiviral activity against the PR8 influenza A strain, which was comparable to the oseltamivir and amantadine. Novel compounds with 4-chlorophenyl, 4-trifluoromethylphenyl, phenyl, 4-fluorophenyl, and 4-cianophenyl substituents in the thiazole ring demonstrated antioxidant activity by DPPH, reducing power, FRAP methods, and antibacterial activity against Escherichia coli and Bacillus subtilis bacteria. These data demonstrate that substituted aminothiazole derivatives are promising scaffolds for further optimization and development of new compounds with potential influenza A-targeted antiviral activity. Study results could demonstrate that structure optimization of novel aminothiazole compounds may be useful in the prevention of reactive oxygen species and developing new specifically targeted antioxidant and antibacterial agents.


Subject(s)
Antioxidants , Influenza, Human , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Escherichia coli , Humans , Microbial Sensitivity Tests , Structure-Activity Relationship , Thiazoles/chemistry
19.
Pharmaceuticals (Basel) ; 15(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35631366

ABSTRACT

Non-small cell lung cancer (NSCLC) remains a leading cause of cancer-associated mortalities worldwide. Therefore, it is crucial to develop a novel therapeutic option targeting localized and metastatic NSCLC. In this paper, we describe the synthesis and biological activity characterization of naphthoquinone derivatives bearing selective anticancer activity to NSCLC via a COX-2 mediated pathway. The biological evaluation of compounds 9−16 showed promising structure-dependent anticancer activity on A549 cells in 2D and 3D models. Compounds were able to significantly (p < 0.05) reduce the A549 viability after 24 h of treatment in comparison to treated control. Compounds 9 and 16 bearing phenylamino and 4-hydroxyphenylamino substituents demonstrated the most promising anticancer activity and were able to induce mitochondrial damage and ROS formation. Furthermore, most promising compounds showed significantly lower cytotoxicity to non-cancerous Vero cells. The in silico ADMET properties revealed promising drug-like properties of compounds 9 and 16. Both compounds demonstrated favorable predicted GI absorption values, while only 16 was predicted to be permeable through the blood−brain barrier. Molecular modeling studies identified that compound 16 is able to interact with COX-2 in arachidonic acid site. Further studies are needed to better understand the safety and in vivo efficacy of compounds 9 and 16.

20.
Langenbecks Arch Surg ; 407(5): 2035-2040, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35277759

ABSTRACT

PURPOSE: Our goal was to assess the outcomes of rectal wall suture during the early and late periods after transanal endoscopic microsurgery (TEM) and long-term bowel function. METHODS: Patients who underwent TEM for rectal neoplasms from May 2017 to March 2021 were prospectively included. A total of 70 patients were enrolled. Seven to 10 days after TEM, clinical data were recorded, and digital rectal examination and rigid proctoscopy were performed. After at least 6 months, bowel function was evaluated using low anterior resection syndrome (LARS) and Wexner questionnaires. RESULTS: Forty-five men with an average age of 67 ± 10.1 (40-85) were included. TEM sutures were recorded as intact in 48/70 (68%) and as dehiscent in 22/70 (32%). It did not have any significant clinical manifestation and was not related with longer postoperative stay or incidence of postoperative complications. Eight of 22 (36.4%) patients with suture dehiscence had per rectal bleeding or febrile temperature without any need for intervention or treatment. The only risk factor for wound dehiscence was a posteriorly located defect. In late postoperative period, there was no difference between groups in LARS or Wexner questionnaire (p value 0.72 and 0.85, respectively). CONCLUSIONS: Our study suggests that 1/3 of the patients' rectal wall defect after TEM will undergo dehiscence in early postoperative period and will not transfer to clinically significant manifestation (without a need of hospitalization or prolonging it). In late postoperative period, there is no difference in bowel function.


Subject(s)
Rectal Neoplasms , Transanal Endoscopic Microsurgery , Aged , Humans , Male , Microsurgery/adverse effects , Microsurgery/methods , Middle Aged , Postoperative Complications/etiology , Prospective Studies , Rectal Neoplasms/surgery , Retrospective Studies , Sutures , Syndrome , Transanal Endoscopic Microsurgery/adverse effects , Transanal Endoscopic Microsurgery/methods , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...