Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
AJNR Am J Neuroradiol ; 37(3): 497-501, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26494695

ABSTRACT

BACKGROUND AND PURPOSE: Thin film nitinol can be processed to produce a thin microporous sheet with a low percentage of metal coverage (<20%) and high pore attenuation (∼70 pores/mm(2)) for flow diversion. We present in vivo results from the treatment of experimental rabbit aneurysms by using a thin film nitinol-based flow-diversion device. MATERIALS AND METHODS: Nineteen aneurysms in the rabbit elastase aneurysm model were treated with a single thin film nitinol flow diverter. Devices were also placed over 17 lumbar arteries to model perianeurysmal branch arteries of the intracranial circulation. Angiography was performed at 2 weeks (n = 7), 1 month (n = 8), and 3 months (n = 4) immediately before sacrifice. Aneurysm occlusion was graded on a 3-point scale (grade I, complete occlusion; grade II, near-complete occlusion; grade III, incomplete occlusion). Toluidine blue staining was used for histologic evaluation. En face CD31 immunofluorescent staining was performed to quantify neck endothelialization. RESULTS: Markedly reduced intra-aneurysmal flow was observed on angiography immediately after device placement in all aneurysms. Grade I or II occlusion was noted in 4 (57%) aneurysms at 2-week, in 6 (75%) aneurysms at 4-week, and in 3 (75%) aneurysms at 12-week follow-up. All 17 lumbar arteries were patent. CD31 staining showed that 75% ± 16% of the aneurysm neck region was endothelialized. Histopathology demonstrated incorporation of the thin film nitinol flow diverter into the vessel wall and no evidence of excessive neointimal hyperplasia. CONCLUSIONS: In this rabbit model, the thin film nitinol flow diverter achieved high rates of aneurysm occlusion and promoted tissue in-growth and aneurysm neck healing, even early after implantation.


Subject(s)
Alloys , Embolization, Therapeutic/instrumentation , Intracranial Aneurysm/therapy , Animals , Cerebral Angiography , Disease Models, Animal , Embolization, Therapeutic/methods , Intracranial Aneurysm/diagnostic imaging , Pancreatic Elastase/toxicity , Rabbits , Stents
2.
J Biomed Mater Res B Appl Biomater ; 100(3): 718-25, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22121079

ABSTRACT

A flexible, low profile, flow diversion stent could replace endovascular coiling for the treatment of intracranial aneurysms. Micropatterned-thin film nitinol (TFN) is a novel biomaterial with high potential for use in next-generation endovascular devices. Recent advancements in micropatterning have allowed for fabrication of a hyperelastic thin film nitinol (HE-TFN). In this study, the authors describe in vitro and in vivo testing of novel HE-TFN based flow diverting stents. Two types of HE-TFN with expanded pores having long axes of 300 and 500 µm were used to fabricate devices. In vitro examination of the early thrombotic response in whole blood showed a possible mechanism for the device's function, whereby HE-TFN serves as a scaffold for blood product deposition. In vivo testing in swine demonstrated rapid occlusion of model wide-neck aneurysms. Average time to occlusion for the 300-µm device was 10.4 ± 5.5 min. (N = 5) and 68 ± 30 min for the 500-µm device (N = 5). All aneurysms treated with bare metal control stents remained patent after 240 min (N = 3). SEM of acutely harvested devices supported in vitro results, demonstrating that HE-TFN serves as a scaffold for blood product deposition, potentially enhancing its flow-diverting effect. Histopathology of devices after 42 days in vivo demonstrated a healthy neointima and endothelialization of the aneurysm neck region. HE-TFN flow-diverting stents warrant further investigation as a novel treatment for intracranial aneurysms.


Subject(s)
Alloys , Intracranial Aneurysm/surgery , Materials Testing , Stents , Animals , Disease Models, Animal , Female , Humans , Porosity , Swine
3.
Biomaterials ; 31(34): 8864-71, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20810163

ABSTRACT

Because of its low profile and biologically inert behavior, thin film nitinol (TFN) is ideally suited for use in construction of endovascular devices. We have developed a surface treatment for TFN designed to minimize platelet adhesion by creating a superhydrophilic surface. The hemocompatibility of expanded polytetrafluorethylene (ePTFE), untreated thin film nitinol (UTFN), and a surface treated superhydrophilic thin film nitinol (STFN) was compared using an in vitro circulation model with whole blood under flow conditions simulating a moderate arterial stenosis. Scanning electron microscopy analysis showed increased thrombus on ePTFE as compared to UTFN or STFN. Total blood product deposition was 6.3 ± 0.8 mg/cm(2) for ePTFE, 4.5 ± 2.3 mg/cm(2) for UTFN, and 2.9 ± 0.4 mg/cm(2) for STFN (n = 12, p < 0.01). ELISA assay for fibrin showed 326 ± 42 µg/cm(2) for ePTFE, 45.6 ± 7.4 µg/cm(2) for UTFN, and 194 ± 25 µg/cm(2) for STFN (n = 12, p < 0.01). Platelet deposition measured by fluorescent intensity was 79,000 20,000 AU/mm(2) for ePTFE, 810 ± 190 AU/mm(2) for UTFN, and 1600 ± 25 AU/mm(2) for STFN (n = 10, p < 0.01). Mass spectrometry demonstrated a larger number of proteins on ePTFE as compared to either thin film. UTFN and STFN appear to attract significantly less thrombus than ePTFE. Given TFN's low profile and our previously demonstrated ability to place TFN covered stents in vivo, it is an excellent candidate for use in next-generation endovascular stents grafts.


Subject(s)
Alloys/pharmacology , Coronary Stenosis/physiopathology , Hemorheology/drug effects , Materials Testing/methods , Blood Platelets/drug effects , Blood Platelets/metabolism , Blood Proteins/chemistry , Blood Proteins/metabolism , Fibrin/metabolism , Humans , Mass Spectrometry , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Thrombosis/pathology
SELECTION OF CITATIONS
SEARCH DETAIL