Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Nat Chem Biol ; 19(4): 498-506, 2023 04.
Article in English | MEDLINE | ID: mdl-36702959

ABSTRACT

[NiFe]-hydrogenases are biotechnologically relevant enzymes catalyzing the reversible splitting of H2 into 2e- and 2H+ under ambient conditions. Catalysis takes place at the heterobimetallic NiFe(CN)2(CO) center, whose multistep biosynthesis involves careful handling of two transition metals as well as potentially harmful CO and CN- molecules. Here, we investigated the sequential assembly of the [NiFe] cofactor, previously based on primarily indirect evidence, using four different purified maturation intermediates of the catalytic subunit, HoxG, of the O2-tolerant membrane-bound hydrogenase from Cupriavidus necator. These included the cofactor-free apo-HoxG, a nickel-free version carrying only the Fe(CN)2(CO) fragment, a precursor that contained all cofactor components but remained redox inactive and the fully mature HoxG. Through biochemical analyses combined with comprehensive spectroscopic investigation using infrared, electronic paramagnetic resonance, Mössbauer, X-ray absorption and nuclear resonance vibrational spectroscopies, we obtained detailed insight into the sophisticated maturation process of [NiFe]-hydrogenase.


Subject(s)
Cupriavidus necator , Hydrogenase , Catalytic Domain , Hydrogenase/chemistry , Hydrogenase/metabolism , Cupriavidus necator/chemistry , Cupriavidus necator/metabolism , Oxidation-Reduction , Nickel
2.
Chemistry ; 26(51): 11851-11861, 2020 Sep 10.
Article in English | MEDLINE | ID: mdl-32432367

ABSTRACT

The design of biomimetic model complexes for the cysteine dioxygenase (CDO) and cysteamine dioxygenase (ADO) is reported, where the 3-His coordination of the iron ion is simulated by three pyrazole donors of a trispyrazolyl borate ligand (Tp) and protected cysteine and cysteamine represent substrate ligands. It is found that the replacement of phenyl groups-attached at the 3-positions of the pyrazole units in a previous model-by mesityl residues has massive consequences, as the latter arrange to a more spacious reaction pocket. Thus, the reaction with O2 proceeds much faster and afterwards the first structural characterization of an iron(II) η2 -O,O-sulfinate product became possible. If one of the three Tp-mesityl groups is placed in the 5-position, an even larger reaction pocket results, which leads to yet faster rates and accumulation of a reaction intermediate at low temperatures, as shown by UV/Vis and Mössbauer spectroscopy. After comparison with the results of investigations on the cobalt analogues this intermediate is tentatively assigned to an iron(III) superoxide species.


Subject(s)
Cysteamine/chemistry , Cysteine Dioxygenase/chemistry , Cysteine/chemistry , Dioxygenases/chemistry , Superoxides/chemistry , Biomimetics , Borates/chemistry , Cobalt/chemistry , Crystallography, X-Ray , Cysteine Dioxygenase/metabolism , Dioxygenases/metabolism , Iron/chemistry , Ligands , Pyrazoles
3.
Chem Sci ; 11(21): 5453-5465, 2020 Apr 27.
Article in English | MEDLINE | ID: mdl-34094072

ABSTRACT

Chemically synthesized compounds that are capable of facilitating the reversible splitting of dihydrogen into protons and electrons are rare in chemists' portfolio. The corresponding biocatalysts - hydrogenases - are, however, abundant in the microbial world. [NiFe]-hydrogenases represent a major subclass and display a bipartite architecture, composed of a large subunit, hosting the catalytic NiFe(CO)(CN)2 cofactor, and a small subunit whose iron-sulfur clusters are responsible for electron transfer. To analyze in detail the catalytic competence of the large subunit without its smaller counterpart, we purified the large subunit HoxC of the regulatory [NiFe]-hydrogenase of the model H2 oxidizer Ralstonia eutropha to homogeneity. Metal determination and infrared spectroscopy revealed a stoichiometric loading of the metal cofactor. This enabled for the first time the determination of the UV-visible extinction coefficient of the NiFe(CO)(CN)2 cofactor. Moreover, the absence of disturbing iron-sulfur clusters allowed an unbiased look into the low-spin Fe2+ of the active site by Mössbauer spectroscopy. Isolated HoxC was active in catalytic hydrogen-deuterium exchange, demonstrating its capacity to activate H2. Its catalytic activity was drastically lower than that of the bipartite holoenzyme. This was consistent with infrared and electron paramagnetic resonance spectroscopic observations, suggesting that the bridging position between the active site nickel and iron ions is predominantly occupied by water-derived ligands, even under reducing conditions. In fact, the presence of water-derived ligands bound to low-spin Ni2+ was reflected by the absorption bands occurring in the corresponding UV-vis spectra, as revealed by time-dependent density functional theory calculations conducted on appropriate in silico models. Thus, the isolated large subunits indeed represent simple [NiFe]-hydrogenase models, which could serve as blueprints for chemically synthesized mimics. Furthermore, our data point to a fundamental role of the small subunit in preventing water access to the catalytic center, which significantly increases the H2 splitting capacity of the enzyme.

4.
Chemistry ; 25(58): 13285-13289, 2019 Oct 17.
Article in English | MEDLINE | ID: mdl-31441974

ABSTRACT

A calix[4]arene ligand, in which two of the phenol functions are replaced by pyrazole units has been employed to mimic the His2 -Tyr2 (His: histidine, Tyr: tyrosine) ligand sphere within the active site of the galactose oxidase (GO). The calixarene backbone forces the corresponding copper(II) complex into a see-saw-type structure, which is hitherto unprecedented in GO modelling chemistry. It undergoes a one-electron oxidation that is centered at the phenolate donor leading to a copper-coordinated phenoxyl radical like in the GO. Accordingly, the complex was tested as a functional model and indeed proved capable of oxidizing benzyl alcohol to the respective aldehyde using two phenoxyl-radical equivalents as oxidants. Finally, the results show that the calixarene platform can be utilized to arrange donor functions to biomimetic binding pockets that allow for the creation of novel types of model compounds.


Subject(s)
Calixarenes/chemistry , Galactose Oxidase/chemistry , Oxygen/chemistry , Aldehydes/chemistry , Amino Acid Sequence , Catalysis , Catalytic Domain , Coordination Complexes/chemistry , Copper/chemistry , Electrochemical Techniques/methods , Ligands , Models, Molecular , Molecular Structure , Nickel/chemistry , Oxidation-Reduction , Phenols/chemistry , Protein Binding , Zinc/chemistry
5.
ACS Chem Biol ; 13(10): 2981-2988, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30183250

ABSTRACT

A Natural Compound Library containing myxobacterial secondary metabolites was screened in murine macrophages for novel activators of IL-1ß maturation and secretion. The most potent of three hits in total was a so far undescribed metabolite, which was identified from the myxobacterium Hyalangium minutum strain Hym3. While the planar structure of 1 was elucidated by high resolution mass spectrometry and NMR data yielding an asymmetric boron containing a macrodiolide core structure, its relative stereochemistry of all 20 stereocenters of the 42-membered ring was assigned by rotating frame Overhause effect spectroscopy correlations, 1H,1H, and 1H,13C coupling constants, and by comparison of 13C chemical shifts to those of the structurally related metabolites tartrolon B-D. The absolute stereochemistry was subsequently assigned by Mosher's and Marfey's methods. Further functional studies revealed that hyaboron and other boronated natural compounds resulted in NLRP3 inflammasome dependent IL-1ß maturation, which is most likely due to their ability to act as potassium ionophores. Moreover, besides its inflammasome-stimulatory activity in human and mouse cells, hyaboron (1) showed additional diverse biological activities, including antibacterial and antiparasitic effects.


Subject(s)
Adjuvants, Immunologic/pharmacology , Boron Compounds/pharmacology , Macrolides/pharmacology , Myxococcales/chemistry , Adjuvants, Immunologic/chemistry , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Boron Compounds/chemistry , Cell Line, Tumor , Fungi/drug effects , Gram-Positive Bacteria/drug effects , Humans , Inflammasomes/metabolism , Macrolides/chemistry , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Small Molecule Libraries/chemistry , Stereoisomerism
6.
Dalton Trans ; 46(47): 16412-16418, 2017 Dec 21.
Article in English | MEDLINE | ID: mdl-28967014

ABSTRACT

Reaction of FeX2(thf)n (X = Cl n = 1.5, Br n = 2) with the chelating 1,1'-bis(silylenyl)-substituted ferrocene ligand SiFcSiA (Fc = ferrocendiyl, Si = PhC(NtBu)2Si:) furnishes the corresponding dihalido Fe(ii) complexes [(SiFcSi)FeX2] (X = Cl, 1 and X = Br, 2) in high yields. Reduction of the latter with an excess of KC8 in the presence of benzene and toluene leads to the unprecedented bis(silylene) stabilized Fe0 complexes [(SiFcSi)Fe-η6(C6H6)] 3 and [(SiFcSi)Fe-η6(C7H8)] 4, respectively. The 57Fe Mössbauer spectrum of 3 at 13 K exhibits parameters (σ = 0.3676 mm s-1; ΔEQ = 1.334 mm s-1) which are consistent with the presence of a pentacoordinated Fe0 atom in a pseudo trigonal-bipyramidal coordination environment, with two dative Si→Fe bonds and three coordination sites occupied by the η6-coordinated arene ligand. Results from DFT calculations, 57Fe Mössbauer parameters and the diamagnetic NMR spectra confirm the redox-innocent nature of these ligands and the zero oxidation state of the iron center. The catalytic ability of 3 was investigated with respect to ketone hydrogenation. In all cases, good to excellent yields to the corresponding alcohols were obtained at 50 °C and 50 bar H2 pressure. Electron-donating as well as -withdrawing substituents were tolerated with excellent to good yields. Conversions of bulkier ketones and unactivated aliphatic ketones lead merely to moderate yields. This represents the first example of a silylene-iron metal complex which has been utilized as a highly active precatalyst in the hydrogenation of ketones. The results underline the powerful ability of chelating bis(N-heterocyclic silylene) ligands acting as strong σ-donor ligands in stabilizing a new generation of low-valent, electron-rich transition metal complexes for catalytic transformations.

7.
Methods Mol Biol ; 1641: 229-258, 2017.
Article in English | MEDLINE | ID: mdl-28748468

ABSTRACT

Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Metabolomics/methods , Gas Chromatography-Mass Spectrometry , Metabolome
8.
Toxicology ; 386: 1-10, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28529062

ABSTRACT

Recently, bile acids (BAs) were reported as promising markers for drug-induced liver injury (DILI). BAs have been suggested to correlate with hepatocellular and hepatobiliary damage; however a clear connection of BA patterns with different types of DILI remains to be established. To investigate if BAs can improve the assessment of liver injury, 20 specific BAs were quantitatively profiled via LC-MS/MS in plasma and liver tissue in a model of methapyrilene-induced liver injury in rats. Methapyrilene, a known hepatotoxin was dosed daily over 14-days at doses of 30 and 80mg/kg, followed by a recovery phase of 10days. Conventional preclinical safety endpoints were related to BA perturbations and to hepatic gene expression profiling for a mechanistic interpretation of effects. Histopathological signs of hepatocellular and hepatobiliary damage with significant changes of clinical chemistry markers were accompanied by significantly increased levels of indivdual BAs in plasma and liver tissue. BA perturbations were already evident at the earliest time point after 30mg/kg treatment, and thereby indicating better sensitivity than clinical chemistry parameters. Furthermore, the latter markers suggested recovery of liver injury, whereas BA levels in plasma and liver remained significantly elevated during the recovery phase, in line with persistent histopathological findings of bile duct hyperplasia (BDH) and bile pigment deposition. Gene expression profiling revealed downregulation of genes involved in BA synthesis (AMACR, BAAT, ACOX2) and hepatocellular uptake (NTCP, OATs), and upregulation for efflux transporters (MRP2, MRP4), suggesting an adaptive hepatocellular protection mechanism against cytotoxic bile acid accumulation. In summary, our data suggests that specific BAs with high reliability such as cholic acid (CA) and chenodeoxycholic acid (CDCA) followed by glycocholic acid (GCA), taurocholic acid (TCA) and deoxycholic acid (DCA) can serve as additional biomarkers for hepatocellular/hepatobiliary damage in the liver in rat toxicity studies.


Subject(s)
Bile Acids and Salts/metabolism , Biomarkers/metabolism , Chemical and Drug Induced Liver Injury/etiology , Liver/drug effects , Methapyrilene/toxicity , Animals , Chemical and Drug Induced Liver Injury/pathology , Chromatography, Liquid , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Gene Expression Regulation/drug effects , Liver/pathology , Male , Methapyrilene/administration & dosage , Rats , Rats, Wistar , Reproducibility of Results , Tandem Mass Spectrometry , Up-Regulation/drug effects
9.
Cell Death Dis ; 8(3): e2709, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28358364

ABSTRACT

Owing to lagging or insufficient neo-angiogenesis, hypoxia is a feature of most solid tumors. Hypoxic tumor regions contribute to resistance against antiproliferative chemotherapeutics, radiotherapy and immunotherapy. Targeting cells in hypoxic tumor areas is therefore an important strategy for cancer treatment. Most approaches for targeting hypoxic cells focus on the inhibition of hypoxia adaption pathways but only a limited number of compounds with the potential to specifically target hypoxic tumor regions have been identified. By using tumor spheroids in hypoxic conditions as screening system, we identified a set of compounds, including the phenothiazine antipsychotic Fluphenazine, as hits with novel mode of action. Fluphenazine functionally inhibits acid sphingomyelinase and causes cellular sphingomyelin accumulation, which induces cancer cell death specifically in hypoxic tumor spheroids. Moreover, we found that functional inhibition of acid sphingomyelinase leads to overactivation of hypoxia stress-response pathways and that hypoxia-specific cell death is mediated by the stress-responsive transcription factor ATF4. Taken together, the here presented data suggest a novel, yet unexplored mechanism in which induction of sphingolipid stress leads to the overactivation of hypoxia stress-response pathways and thereby promotes their pro-apoptotic tumor-suppressor functions to specifically kill cells in hypoxic tumor areas.


Subject(s)
Colonic Neoplasms/enzymology , Fluphenazine/pharmacology , Neoplasm Proteins/antagonists & inhibitors , Sphingomyelin Phosphodiesterase/antagonists & inhibitors , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Cell Death/drug effects , Cell Hypoxia/drug effects , Cell Hypoxia/genetics , Cell Line, Tumor , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Humans , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Sphingomyelin Phosphodiesterase/genetics
10.
BMC Bioinformatics ; 13: 214, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-22920415

ABSTRACT

BACKGROUND: Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive detectors, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These hyphenated methods provide high-dimensional data. Comparing such data manually to find corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and matching of corresponding features between two or more experiments is required. Such a matching algorithm should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously extracted peak features or on aligning and comparing the complete raw data containing all available features. RESULTS: In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple alignment by bidirectional best hits peak assignment and cluster extension (BIPACE) and center-star multiple alignment by pairwise partitioned dynamic time warping (CeMAPP-DTW). We show how the similarity-based peak group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used as a preprocessing step for the pairwise alignments performed by CeMAPP-DTW. We evaluate the algorithms individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and on a larger GC-MS dataset studying grains of wheat (Triticum aestivum). CONCLUSIONS: We have shown that BIPACE achieves very high precision and recall and a very low number of false positive peak assignments on both evaluation datasets. CeMAPP-DTW finds a high number of true positives when executed on its own, but achieves even better results when BIPACE is used to constrain its search space. The source code of both algorithms is included in the OpenSource software framework Maltcms, which is available from http://maltcms.sf.net. The evaluation scripts of the present study are available from the same source.


Subject(s)
Algorithms , Metabolomics/methods , Software , Gas Chromatography-Mass Spectrometry , Leishmania/metabolism , Proteomics/methods , Triticum/metabolism
11.
Microbiology (Reading) ; 158(Pt 8): 2060-2072, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22653947

ABSTRACT

The application of toxic triphenylmethane dyes such as crystal violet (CV) in various industrial processes leads to large amounts of dye-contaminated sludges that need to be detoxified. Specific bacteria residing in wastewater treatment plants (WWTPs) are able to degrade triphenylmethane dyes. The objective of this work was to gain insights into the genetic background of bacterial strains capable of CV degradation. Three bacterial strains isolated from a municipal WWTP harboured IncP-1ß plasmids mediating resistance to and decolorization of CV. These isolates were assigned to the genera Comamonas and Delftia. The CV-resistance plasmid pKV29 from Delftia sp. KV29 was completely sequenced. In addition, nucleotide sequences of the accessory regions involved in conferring CV resistance were determined for plasmids pKV11 and pKV36 from the other two isolates. Plasmid pKV29 contains typical IncP-1ß backbone modules that are highly similar to those of previously sequenced IncP-1ß plasmids that confer antibiotic resistance, degradative capabilities or mercury resistance. The accessory regions located between the conjugative transfer (tra) and mating pair formation modules (trb) of all three plasmids analysed share common modules and include a triphenylmethane reductase gene, tmr, that is responsible for decolorization of CV. Moreover, these accessory regions encode other enzymes that are dispensable for CV degradation and hence are involved in so-far-unknown metabolic pathways. Analysis of plasmid-mediated degradation of CV in Escherichia coli by ultra-high-performance liquid chromatography-electrospray ionization-quadrupole-time-of-flight MS revealed that leuco crystal violet was the first degradation product. Michler's ketone and 4-dimethylaminobenzaldehyde appeared as secondary degradation metabolites. Enzymes encoded in the E. coli chromosome seem to be responsible for cleavage of leuco crystal violet. Plasmid-mediated degradation of triphenylmethane dyes such as CV is an option for the biotechnological treatment of sludges contaminated with these dyes.


Subject(s)
Comamonas/metabolism , Delftia/metabolism , Gentian Violet/metabolism , Plasmids/genetics , Trityl Compounds/metabolism , Wastewater/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biodegradation, Environmental , Comamonas/classification , Comamonas/genetics , Comamonas/isolation & purification , Delftia/classification , Delftia/genetics , Delftia/isolation & purification , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plasmids/metabolism , Sewage/microbiology , Waste Disposal, Fluid/instrumentation
12.
J Biol Chem ; 286(15): 12850-9, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21321121

ABSTRACT

The gram-negative myxobacterium Sorangium cellulosum So ce56 bears the largest bacterial genome published so far, coding for nearly 10,000 genes. Careful analysis of this genome data revealed that part of the genes coding for the very well conserved biosynthesis of lipopolysaccharides (LPS) are missing in this microbe. Biochemical analysis gave no evidence for the presence of LPS in the membranes of So ce56. By analyzing the lipid composition of its outer membrane sphingolipids were identified as the major lipid class, together with ornithine-containing lipids (OL) and ether lipids. A detailed analysis of these lipids resulted in the identification of more than 50 structural variants within these three classes, which possessed several interesting properties regarding to LPS replacement, mediators in myxobacterial differentiation, as well as potential bioactive properties. The sphingolipids with the basic structure C9-methyl-C(20)-sphingosine possessed as an unusual trait C9-methylation, which is common to fungi but highly uncommon to bacteria. Such sphingolipids have not been found in bacteria before, and they may have a function in myxobacterial development. The OL, also identified in myxobacteria for the first time, contained acyloxyacyl groups, which are also characteristic for LPS and might replace those in certain functions. Finally, the ether lipids may serve as biomarkers in myxobacterial development.


Subject(s)
Cell Membrane/metabolism , Membrane Lipids/metabolism , Myxococcales/metabolism , Cell Membrane/genetics , Genome, Bacterial/physiology , Lipopolysaccharides , Membrane Lipids/genetics , Myxococcales/genetics
13.
New Phytol ; 188(4): 985-1000, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20731781

ABSTRACT

The flavonol branch of flavonoid biosynthesis is under transcriptional control of the R2R3-MYBs production of flavonol glycoside1 (PFG1/MYB12, PFG2/MYB11 and PFG3/MYB111) in Arabidopsis thaliana. Here, we investigated the influence of specific PFG transcription factors on flavonol distribution in various organs. A combination of genetic and metabolite analysis was used to identify transcription factor gene-metabolite correlations of the flavonol metabolic pathway. Flavonol glycoside accumulation patterns have been analysed in wild-type and multiple R2R3-MYB PFG mutants in an organ- and development-dependent manner using high-performance thin-layer chromatography, supplemented with liquid chromatography-mass spectroscopy metabolite profiling. Our results clearly demonstrate a differential influence of MYB11, MYB12 and MYB111 on the spatial accumulation of specific flavonol derivatives in leaves, stems, inflorescences, siliques and roots. In addition, MYB11-, MYB12- and MYB111-independent flavonol glycoside accumulation was observed in pollen grains and siliques/seeds. The highly complex tissue- and developmental-specific regulation of flavonol biosynthesis in A. thaliana is orchestrated by at least four PFG transcription factors, differentially influencing the spatial accumulation of specific flavonol derivatives. We present evidence that a separate flavonol control mechanism might be at play in pollen.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flavonols/metabolism , Glycosides/metabolism , Arabidopsis/cytology , Arabidopsis/enzymology , Arabidopsis/genetics , Chromatography, Thin Layer , Genes, Plant/genetics , Glucuronosyltransferase/metabolism , Mutation/genetics , Organ Specificity , Pollen/cytology , Pollen/metabolism , Staining and Labeling , Transcription Factors/metabolism , Transfection
14.
J Biol Chem ; 285(39): 30247-60, 2010 Sep 24.
Article in English | MEDLINE | ID: mdl-20581114

ABSTRACT

To obtain a detailed picture of sulfur deprivation-induced H(2) production in microalgae, metabolome analyses were performed during key time points of the anaerobic H(2) production process of Chlamydomonas reinhardtii. Analyses were performed using gas chromatography coupled to mass spectrometry (GC/MS), two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GCxGC-TOFMS), lipid and starch analysis, and enzymatic determination of fermentative products. The studies were designed to provide a detailed metabolite profile of the solar Bio-H(2) production process. This work reports on the differential analysis of metabolic profiles of the high H(2)-producing strain Stm6Glc4 and the wild-type cc406 (WT) before and during the H(2) production phase. Using GCxGC-TOFMS analysis the number of detected peaks increased from 128 peaks, previously detected by GC/MS techniques, to ∼1168. More detailed analysis of the anaerobic H(2) production phase revealed remarkable differences between wild-type and mutant cells in a number of metabolic pathways. Under these physiological conditions the WT produced up to 2.6 times more fatty acids, 2.2 times more neutral lipids, and up to 4 times more fermentation products compared with Stm6Glc4. Based on these results, specific metabolic pathways involving the synthesis of fatty acids, neutral lipids, and fermentation products during anaerobiosis in C. reinhardtii have been identified as potential targets for metabolic engineering to further enhance substrate supply for the hydrogenase(s) in the chloroplast.


Subject(s)
Chlamydomonas reinhardtii/metabolism , Hydrogen/metabolism , Metabolome/physiology , Anaerobiosis/physiology , Animals , Electrons , Lipid Metabolism/physiology , Protons
15.
Plant Physiol ; 152(2): 1000-14, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20007443

ABSTRACT

The relevance of the symbiosis-induced Medicago truncatula sucrose synthase gene MtSucS1 for an efficient arbuscular mycorrhiza (AM) was studied using two independent antisense lines that displayed up to 10-fold reduced SucS1 levels in roots. Mycorrhizal MtSucS1-reduced lines exhibited an overall stunted aboveground growth under inorganic phosphorus limitation. Apart from a reduced plant height, shoot weight, and leaf development, a delayed flowering, resulting in a lower seed yield, was observed. In addition, the root-to-shoot and root weight ratios increased significantly. Gene expression studies demonstrated a major reversion of AM-associated transcription, exhibiting a significant repression of well-known plant AM marker and mycosymbiont genes, together indicating a diminished AM fungus colonization of MtSucS1-antisense lines. Concomitantly, gas chromatography-mass spectrometry-based metabolite profiling revealed that mycorrhizal MtSucS1-reduced lines were affected in important nodes of the carbon, nitrogen, and phosphorus metabolism, accentuating a physiological significance of MtSucS1 for AM. In fact, antisensing MtSucS1 provoked an impaired fungal colonization within the less abundant infected regions, evident from strongly reduced frequencies of internal hyphae, vesicles, and arbuscules. Moreover, arbuscules were early senescing, accompanied with a reduced development of mature arbuscules. This defective mycorrhiza status correlated with reduced phosphorus and nitrogen levels and was proportional to the extent of MtSucS1 knockdown. Together, our results point to an important role for MtSucS1 in the establishment and maintenance of arbuscules in the AM symbiosis.


Subject(s)
Medicago truncatula/genetics , Mycorrhizae/growth & development , Plant Proteins/metabolism , Plant Roots/microbiology , Symbiosis , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Knockdown Techniques , Genes, Plant , Glucosyltransferases , Medicago truncatula/enzymology , Medicago truncatula/growth & development , Medicago truncatula/microbiology , Phosphates/metabolism , Plant Proteins/genetics , Plant Roots/enzymology , Plant Roots/genetics
16.
J Biotechnol ; 140(1-2): 124-34, 2009 Mar 10.
Article in English | MEDLINE | ID: mdl-19111838

ABSTRACT

High content microscopy as a screening tool to identify bioactive agents has provided researchers with the ability to characterise biological activities at the level of single cells. Here, we describe the development and the application of a high content screening assay for the identification and characterisation of cytostatic bioactivities from Myxobacteria extracts. In an automated microscopy assay Sf9 insect cells were visualised utilising the stains bisbenzimide Hoechst 33342, calcein AM, and propidium iodide. Imaging data were processed by the ScanR Analysis-software to determine the ploidy and vitality of each cell and to quantify cell populations. More than 98% of the Sf9 cells were viable and the culture consisted of diploid ( approximately 30%), tetraploid ( approximately 60%), polyploidic (<10%) and apoptotic (<5%) cells. Treatment with the reference substances blasticidin, colchicine, paclitaxel, and cytochalasin D induced changes in ploidy and vitality, which were characteristic for the respective bioactive substance. Furthermore, crude extracts from the chivosazole producing Myxobacterium Sorangium cellulosum So ce56 induced an increase of polyploid cells and a decrease in total cell count, while a mutant producing nearly no chivosazole triggered none of these effects. Purified chivosazole induced the same effects as the wild type extract. Similar effects have been observed for the reference compound cytochalasin D. On the basis of this assay, crude extracts of ten different Myxobacteria cultures were screened. Three extracts exhibited strong cytotoxic activities, further five extracts induced weak changes in the ploidy distribution, and two extracts showed no detectable effect within the assay. Therefore, this robust assay provides the ability to discover and characterise cytotoxic and cytostatic bioactivities in crude bacterial extracts.


Subject(s)
Complex Mixtures/pharmacology , Cytostatic Agents/pharmacology , Image Processing, Computer-Assisted/methods , Microscopy/methods , Myxococcales/metabolism , Animals , Cell Cycle/drug effects , Cell Line , Cell Proliferation/drug effects , Colchicine/pharmacology , Coloring Agents/metabolism , Cytochalasin D/pharmacology , Drug Discovery , Fluorescent Dyes/metabolism , Macrolides/pharmacology , Paclitaxel/pharmacology , Ploidies , Pyrrolidinones/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...