Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Cereb Cortex ; 31(3): 1827-1836, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33207366

ABSTRACT

Following birth, infants must immediately process and rapidly adapt to the array of unknown sensory experiences associated with their new ex-utero environment. However, although it is known that unimodal stimuli induce activity in the corresponding primary sensory cortices of the newborn brain, it is unclear how multimodal stimuli are processed and integrated across modalities. The latter is essential for learning and understanding environmental contingencies through encoding relationships between sensory experiences; and ultimately likely subserves development of life-long skills such as speech and language. Here, for the first time, we map the intracerebral processing which underlies auditory-sensorimotor classical conditioning in a group of 13 neonates (median gestational age at birth: 38 weeks + 4 days, range: 32 weeks + 2 days to 41 weeks + 6 days; median postmenstrual age at scan: 40 weeks + 5 days, range: 38 weeks + 3 days to 42 weeks + 1 days) with blood-oxygen-level-dependent (BOLD) functional magnetic resonance imaging (MRI) and magnetic resonance (MR) compatible robotics. We demonstrate that classical conditioning can induce crossmodal changes within putative unimodal sensory cortex even in the absence of its archetypal substrate. Our results also suggest that multimodal learning is associated with network wide activity within the conditioned neural system. These findings suggest that in early life, external multimodal sensory stimulation and integration shapes activity in the developing cortex and may influence its associated functional network architecture.


Subject(s)
Cerebral Cortex/physiology , Infant, Newborn/physiology , Learning/physiology , Acoustic Stimulation , Brain Mapping/methods , Conditioning, Classical , Female , Humans , Magnetic Resonance Imaging/methods , Male
2.
Osteoporos Int ; 31(12): 2449-2459, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32676823

ABSTRACT

Osteoporosis is a major concern in patients with Duchenne muscular dystrophy. In this novel study of teriparatide treatment in 6 patients with severe osteoporosis, bone health (fractures, vertebral morphometry, and DXA) remained stable, with no adverse events. These findings will help inform future osteoporosis research in this challenging population. INTRODUCTION: Despite standard therapy with vitamin D and bisphosphonates (BP), many patients with Duchenne muscular dystrophy (DMD) continue to sustain fragility fractures due to long-term glucocorticoid treatment and limited mobility. We aimed to evaluate the safety and efficacy of teriparatide for the treatment of severe osteoporosis in adolescent and young adult patients with DMD. METHODS: We prospectively treated 6 patients with DMD who had severe osteoporosis with teriparatide 20 mcg subcutaneously daily for 1-2 years. Inclusion criteria were long-term glucocorticoid therapy, and severe osteoporosis despite treatment with BP, or intolerance to BP. We examined long bone and vertebral fracture outcomes, including vertebral morphometry measures, bone mineral density and content, bone formation markers, safety indices, and adverse events. RESULTS: The mean age at teriparatide start was 17.9 years (range 13.9-22.1 years). All 6 patients were on daily glucocorticoids (mean ± SD; duration 10.9 ± 2.5 years) and 5 were non-ambulatory. Five patients had been treated with BP for 7.9 ± 4.2 years. All had vertebral and a history of long bone fragility fractures at baseline. Vertebral heights and Genant fracture grading remained stable. Long bone fracture rate appeared to decrease (from 0.84/year to 0.09/year); one patient sustained a long bone fracture at 6 months of treatment. Trajectories for change in bone mineral density and content were not different post- vs. pre-teriparatide. Procollagen type 1 amino-terminal propeptide (P1NP) increased, while laboratory safety indices remained stable and non-concerning. No adverse events were observed. CONCLUSION: In six patients with DMD treated with teriparatide for severe osteoporosis, we observed stable bone health and modest increases in P1NP, without safety concerns. Further studies are needed to better understand teriparatide efficacy for treatment of osteoporosis in patients with DMD.


Subject(s)
Bone Density Conservation Agents , Muscular Dystrophy, Duchenne , Osteoporosis , Adolescent , Adult , Bone Density , Bone Density Conservation Agents/adverse effects , Humans , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/drug therapy , Osteoporosis/drug therapy , Teriparatide/therapeutic use , Young Adult
3.
Article in English | MEDLINE | ID: mdl-29031389

ABSTRACT

Early life heart rate (HR) and heart rate variability (HRV) reflect autonomic system maturation. Intervention with n-3 long chain polyunsaturated fatty acids (LCPUFAs) during pregnancy favorably affects fetal HR and HRV, complementing previous observations for n-3 LCPUFA intervention during infancy. The relationship between maternal fatty acid status during pregnancy and infant HR/HRV has not previously been assessed. The aim of this study was to explore associations between maternal n-6 and n-3 fatty acid status during pregnancy and infant HR and HRV at 2 weeks, 4 months, and 6 months of age using linear regression models. Maternal n-3 fatty acids were inversely related to infant HR and positively related to HRV. Conversely, maternal n-6 fatty acids were positively related to infant HR and inversely related to HRV. These data build on existing literature evidencing a role for n-3 fatty acids in accelerating autonomic development and link n-6 fatty acids to HR/HRV.


Subject(s)
Fatty Acids, Omega-3/blood , Fatty Acids, Omega-6/blood , Heart Rate, Fetal , Maternal-Fetal Relations , Adult , Arachidonic Acid/blood , Docosahexaenoic Acids/blood , Female , Humans , Infant , Infant, Newborn , Pregnancy
4.
J Pregnancy ; 2016: 1853935, 2016.
Article in English | MEDLINE | ID: mdl-27504202

ABSTRACT

Background. The 2015-2020 Dietary Guidelines for Americans recommend that pregnant women and women of childbearing ages consume 8-12 oz. of seafood per week. Fish are the major dietary source of omega-3 long chain polyunsaturated fatty acids, which have benefits for the mother and fetus. Methods. In this observational study, we investigated dietary habits of pregnant women in Baton Rouge, Louisiana, USA, to determine if they achieve recommended seafood intake. A print survey, which included commonly consumed foods from protein sources (beef, chicken, pork, and fish), was completed by pregnant women at a single-day hospital convention for expecting families in October 2015. Women (n = 221) chose from six predefined responses to answer how frequently they were consuming each food. Results. Chicken was consumed most frequently (75% of women), followed by beef (71%), pork (65%), and fish (22%), respectively. Consumption frequency for the most consumed fish (catfish, once per month) was similar to or lower than that of the least consumed beef, chicken, and pork foods. Consumption frequency for the most consumed chicken and beef foods was at least once per week. Conclusion. Our data indicate that pregnant women in Louisiana often consume protein sources other than fish and likely fail to meet dietary seafood recommendations.


Subject(s)
Diet/statistics & numerical data , Pregnant Women , Seafood , Adult , Animals , Chickens , Fatty Acids, Omega-3 , Female , Humans , Louisiana , Nutrition Policy , Pregnancy , Red Meat , Surveys and Questionnaires , Young Adult
5.
J Biol Chem ; 291(19): 10228-38, 2016 May 06.
Article in English | MEDLINE | ID: mdl-26940872

ABSTRACT

There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of ß-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. ß-Aryl ether units are typically abundant in lignin, corresponding to 50-70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic ß-aryl ether (ß-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the ß-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Lignin/metabolism , Oxidoreductases/chemistry , Oxidoreductases/metabolism , Sphingomonadaceae/enzymology , Catalysis , Crystallography, X-Ray , Ethers/metabolism , Metabolic Networks and Pathways , Models, Molecular , Protein Conformation , Stereoisomerism , Substrate Specificity
6.
J Biol Chem ; 291(10): 5234-46, 2016 Mar 04.
Article in English | MEDLINE | ID: mdl-26637355

ABSTRACT

Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via ß-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent ß-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because ß-aryl ether bonds account for 50-70% of all interunit linkages in lignin, understanding the mechanism of enzymatic ß-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.


Subject(s)
Bacterial Proteins/chemistry , Catalytic Domain , Lignin/metabolism , Oxidoreductases/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conserved Sequence , Molecular Sequence Data , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Binding , Proteobacteria/enzymology , Substrate Specificity
8.
Infect Genet Evol ; 27: 566-75, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24787999

ABSTRACT

The effect of biodiversity declines on human health is currently debated, but empirical assessments are lacking. Lyme disease provides a model system to assess relationships between biodiversity and human disease because the etiologic agent, Borrelia burgdorferi, is transmitted in the United States by the generalist black-legged tick (Ixodes scapularis) among a wide range of mammalian and avian hosts. The 'dilution effect' hypothesis predicts that species-poor host communities dominated by white-footed mice (Peromyscus leucopus) will pose the greatest human risk because P. leucopus infects the largest numbers of ticks, resulting in higher human exposure to infected I. scapularis ticks. P. leucopus-dominated communities are also expected to maintain a higher frequency of those B. burgdorferi outer surface protein C (ospC) genotypes that this host species more efficiently transmits ('multiple niche polymorphism' hypothesis). Because some of these genotypes are human invasive, an additive increase in human disease risk is expected in species-poor settings. We assessed these theoretical predictions by comparing I. scapularis nymphal infection prevalence, density of infected nymphs and B. burgdorferi genotype diversity at sites on Block Island, RI, where P. leucopus dominates the mammalian host community, to species-diverse sites in northeastern Connecticut. We found no support for the dilution effect hypothesis; B. burgdorferi nymphal infection prevalence was similar between island and mainland and the density of B. burgdorferi infected nymphs was higher on the mainland, contrary to what is predicted by the dilution effect hypothesis. Evidence for the multiple niche polymorphism hypothesis was mixed: there was lower ospC genotype diversity at island than mainland sites, but no overrepresentation of genotypes with higher fitness in P. leucopus or that are more invasive in humans. We conclude that other mechanisms explain similar nymphal infection prevalence in both communities and that high ospC genotype diversity can be maintained in both species-poor and species-rich communities.


Subject(s)
Biodiversity , Lyme Disease/epidemiology , Risk , Vertebrates , Animals , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Borrelia burgdorferi/genetics , Gene Frequency , Genotype , Humans , Larva , Lyme Disease/transmission , Nymph , Prevalence , Ticks/microbiology
9.
Leukemia ; 28(1): 78-87, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24045501

ABSTRACT

We hypothesized that specific molecular mutations are important biomarkers for response to DNA methyltransferase inhibitors (DNMT inhibitors) and may have prognostic value in patients with myelodysplastic syndromes (MDS). Mutational analysis was performed in 92 patients with MDS and related disorders who received 5-azacytidine (n=55), decitabine (n=26) or both (n=11). Mutational status was correlated with overall response rate (ORR), progression-free survival (PFS) and overall survival (OS) by univariate and multivariate analysis. Risk stratification models were created. TET2, DNMT3A, IDH1/IDH2, ASXL1, CBL, RAS and SF3B1 mutations were found in 18, 9, 8, 26, 3, 2 and 13% of patients, respectively. In multivariate analysis, TET2(MUT) and/or DNMT3A(MUT) (P=0.03), platelets > or = 100 × 10(9)/l (P=0.007) and WBC<3.0 × 10(9)/l (P=0.03) were independent predictors of better response. TET2(MUT) and/or DNMT3A(MUT) (P=0.04) status was also independently prognostic for improved PFS, as were good or intermediate cytogenetic risk (P<0.0001), age<60 (P=0.0001), treatment with both 5-azacytidine and decitabine (P=0.02) and hemoglobin > or = 10 g/dl (P=0.01). Better OS was associated with ASXL1(WT) (P=0.008) and SF3B1(MUT) (P=0.01), and, similar to PFS, cytogenetic risk (P=0.0002), age (P=0.02) and hemoglobin (P=0.04). These data support the role of molecular mutations as predictive biomarkers for response and survival in MDS patients treated with DNMT inhibitors.


Subject(s)
DNA Modification Methylases/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mutation , Myelodysplastic Syndromes/pathology , Adult , Aged , Aged, 80 and over , Enzyme Inhibitors/therapeutic use , Female , Humans , Male , Middle Aged , Myelodysplastic Syndromes/drug therapy , Retrospective Studies
10.
Leukemia ; 27(6): 1301-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23486531

ABSTRACT

Polycomb repressive complex 2 (PRC2) is involved in trimethylation of histone H3 lysine 27 (H3K27), chromatin condensation and transcriptional repression. The silencing function of PRC2 complex is mostly attributed to its intrinsic activity for methylating H3K27. Unlike in B-cell lymphomas, enhancer of zeste homolog 2 (EZH2) mutations in myeloid malignancies are inactivating/hypomorphic. When we assessed the mutational status in myeloid malignancies (N=469 cases examined), we found EZH2 and EED/SUZ12 mutations in 8% and 3.3% of cases, respectively. In addition to mutant cases, reduced EZH2 expression was also found in 78% cases with hemizygous deletion (-7/del7q cases involving EZH2 locus) and 41% of cases with diploid chromosome 7, most interestingly cases with spliceosomal mutations (U2AF1/SRSF2 mutations; 63% of cases). EZH2 mutations were characterized by decreased H3K27 trimethylation and increased chromatin relaxation at specific gene loci accompanied by higher transcriptional activity. One of the major downstream target is HOX gene family, involved in the regulation of stem cell self-renewal. HOXA9 was found to be overexpressed in cases with decreased EZH2 expression either by EZH2/spliceosomal mutations or because of -7/del7q. In summary, our results suggest that loss of gene repression through a variety of mutations resulting in reduced H3K27 trimethylation may contribute to leukemogenesis.


Subject(s)
Epigenesis, Genetic , Hematologic Neoplasms/genetics , Histones/genetics , Polycomb Repressive Complex 2/metabolism , Blotting, Western , Chromosomes, Human, Pair 7 , Enhancer of Zeste Homolog 2 Protein , Humans , Mutation , Prognosis , Real-Time Polymerase Chain Reaction
11.
J Nutr Health Aging ; 17(1): 76-80, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23299384

ABSTRACT

OBJECTIVES: Identify relationships and evaluate effects of long chain polyunsaturated fatty acids (LCPUFA) on frailty and physical performance. DESIGN: Randomized, double blind pilot study. SETTING: University General Clinical Research Center. PARTICIPANTS: 126 postmenopausal women. INTERVENTION: 2 fish oil (1.2g eicosapentaenoic acid [EPA] and docosahexaenoic acid [DHA]) or 2 placebo (olive oil) capsules per day for 6 months. All participants received calcium and vitamin D supplements. MEASUREMENTS: Fatty acid levels, frailty assessment, hand grip strength, 8 foot walk, body composition, medical history and co-morbidities, nutrient intake, and inflammatory biomarkers taken at baseline and 6 months. RESULTS: At baseline, those with greater red blood cell (RBC) DHA and DHA/arachidonic acid (AA) presented with less frailty (r = -0.242, p=0.007 and r = -0.254, p=0.004, respectively). Fish oil supplementation resulted in higher RBC DHA and lower AA compared to baseline and placebo (p<0.001) and an improvement in walking speed compared to placebo (3.0±16 vs. -3.5±14, p=0.038). A linear regression model included age, antioxidant intake (selenium and vitamin C), osteoarthritis, frailty phenotype, and tumor necrosis factor alpha (TNFα). The model explained 13.6% of the variance in the change in walking speed. Change in DHA/AA (p=0.01) and TNFα (p=0.039), and selenium intake (p=0.031) had the greatest contribution to change in walking speed. CONCLUSION: Physical performance, measured by change in walking speed, was significantly affected by fish oil supplementation. Dietary intake of antioxidants (selenium and vitamin C) and changes in TNFα also contributed to change in walking speed suggesting LCPUFA may interact with antioxidants and inflammatory response to impact physical performance.


Subject(s)
Antioxidants/administration & dosage , Dietary Supplements , Docosahexaenoic Acids/administration & dosage , Eicosapentaenoic Acid/administration & dosage , Motor Activity/drug effects , Aged , Aged, 80 and over , Arachidonic Acid/blood , Ascorbic Acid/administration & dosage , Biomarkers/blood , Body Composition , Body Mass Index , Calcium, Dietary/administration & dosage , Docosahexaenoic Acids/blood , Double-Blind Method , Eicosapentaenoic Acid/blood , Energy Intake , Female , Fish Oils/administration & dosage , Hand Strength/physiology , Humans , Linear Models , Middle Aged , Olive Oil , Pilot Projects , Plant Oils , Postmenopause , Selenium/administration & dosage , Selenium/blood , Surveys and Questionnaires , Tumor Necrosis Factor-alpha/blood , Vitamin D/administration & dosage
13.
Leukemia ; 26(7): 1547-54, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22246246

ABSTRACT

Recurrent homozygous CBL-inactivating mutations in myeloid malignancies decrease ubiquitin ligase activity that inactivates SRC family kinases (SFK) and receptor tyrosine kinases (RTK). However, the most important SFK and RTK affected by these mutations, and hence, the most important therapeutic targets, have not been clearly characterized. We compared SFK and RTK pathway activity and inhibitors in acute myeloid leukemia cell lines containing homozygous R420Q mutation (GDM-1), heterozygous deletion (MOLM13) and wild-type (WT) CBL (THP1, U937). As expected with CBL loss, GDM-1 displayed high KIT expression and granulocyte-macrophage colony-stimulating factor (GM-CSF) hypersensitivity. Ectopic expression of WT CBL decreased GDM-1 proliferation but not cell lines with WT CBL. GDM-1, but not the other cell lines, was highly sensitive to growth inhibition by dasatinib (dual SFK and RTK inhibitor, LD50 50 nM); there was less or no selective inhibition of GDM-1 growth by sunitinib (RTK inhibitor), imatinib (ABL, KIT inhibitor), or PP2 (SFK inhibitor). Phosphoprotein analysis identified phosphorylation targets uniquely inhibited by dasatinib treatment of GDM-1, including a number of proteins in the KIT and GM-CSF receptor pathways (for example, KIT Tyr721, STAT3 Tyr705). In conclusion, the promiscuous effects of CBL loss on SFK and RTK signaling appear to be best targeted by dual SFK and RTK inhibition.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-cbl/genetics , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , src-Family Kinases/antagonists & inhibitors , Blotting, Western , Cell Proliferation/drug effects , Flow Cytometry , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Immunoenzyme Techniques , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Phosphorylation/drug effects , Prognosis , Protein Binding , Proto-Oncogene Proteins c-cbl/metabolism , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Tumor Cells, Cultured
17.
J Phys Chem A ; 113(11): 2544-50, 2009 Mar 19.
Article in English | MEDLINE | ID: mdl-19281148

ABSTRACT

Fourier Transform infrared spectroscopy and Raman spectroscopy have been used to investigate hydrogen bonding of methanol in different solvents with an aim to explore potential experimental evidence for improper hydrogen bonding involving the methyl group of methanol as suggested by various computational studies. Pure methanol and solutions of methanol in water, acetonitrile, carbon tetrachloride, deuterium oxide, and deuterated acetonitrile have been studied over a range of concentrations. Wavenumber shifts of the CH stretching vibrations were examined to determine if the CH from methanol participates in hydrogen bonding. New concepts of the vibrational wavenumber and integrated intensity at infinite dilution are proposed and given the respective symbols nu(CH(o)) and C(j,CH)*(o). Using the results obtained for methanol in carbon tetrachloride as a reference, shifts in nu(CH(o)) of methanol to higher wavenumbers (blue shifts) were observed in each of the other solvents studied, with the shifts being greatest for the methanol-water interactions. The shifts in vibrational wavenumber suggest possible improper hydrogen bonding, although at this stage a definitive conclusion is not possible. The C(j,CH)*(o) results show that there is no distinguishable change in the methanol CH stretch integrated intensity in carbon tetrachloride and acetonitrile, while there is a significant decrease in the methanol CH stretch integrated intensity in the water solutions.

18.
Article in English | MEDLINE | ID: mdl-19167263

ABSTRACT

Previous studies have been done in this laboratory focusing on the optical properties of several liquid aromatic and aliphatic hydrocarbons in the infrared. The current study reports the infrared and absorption Raman spectra of liquid cyclohexane. Infrared spectra were recorded at 25 degrees C over a wavenumber range of 7400-490 cm(-1). Infrared measurements were taken using transmission cells with pathlengths ranging from 3 to 5000 microm. Raman spectra were recorded between 3700 and 100 cm(-1) at 25 degrees C using a 180 degrees reflection geometry. Ab initio calculations of the vibrational wavenumbers at the B3LYP/6311G level of theory were performed and used to help assign the observed IR and Raman spectra. Extensive assignments of the fundamentals and binary combinations observed in the infrared imaginary molar polarizability spectrum are reported. The imaginary molar polarizability spectrum was curve fitted to separate the intensity from the various transitions and used to determine the transition moments and magnitudes of the derivatives of the dipole moment with respect to the normal coordinates for the fundamentals.


Subject(s)
Cyclohexanes/chemistry , Spectrophotometry, Infrared/methods , Spectrum Analysis, Raman/methods , Optics and Photonics , Solutions/chemistry
19.
Br J Haematol ; 141(2): 170-8, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18318770

ABSTRACT

Double-negative (DN) regulatory T cells (Tregs) are specialized T lymphocytes involved in the down-modulation of immune responses, resulting in allotolerance after allogeneic haematopoietic stem cell transplantation (HSCT). Most of the properties of DN Tregs were identified in murine models, including the unique ability to suppress alloreactive syngeneic effector T cells in an antigen-specific manner via Fas/Fas-ligand interactions. We investigated the behaviour of DN Tregs following human allogeneic HSCT with regard to occurrence of graft-versus-host disease (GvHD) and restoration of T-cell receptor repertoire in a cohort of 40 patients. The frequency of DN Tregs and CD4/CD8 TCR repertoire was measured serially and at the time of diagnosis of GvHD by flow cytometry. Analysis demonstrated a positive correlation between degree of alloreactivity, as measured by grade of GvHD, and the number of variable beta chain (Vbeta) family expansions in both T-cell populations. We also found that a deficiency of DN Tregs was associated with an increased number of Vbeta family expansions, and most importantly, with the occurrence of GvHD. All individuals who demonstrated more than 1% DN Tregs did not develop GvHD, providing evidence that DN Tregs participate in peripheral tolerance to prevent GvHD when expanded after allogeneic HSCT.


Subject(s)
Hematopoietic Stem Cell Transplantation , Immune Tolerance/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes, Regulatory/immunology , Adult , Aged , Female , Follow-Up Studies , Forkhead Transcription Factors/blood , Graft vs Host Disease/immunology , Humans , Male , Middle Aged , Severity of Illness Index
20.
J Phys Chem A ; 112(14): 3127-32, 2008 Apr 10.
Article in English | MEDLINE | ID: mdl-18338874

ABSTRACT

In this paper, the results of a study of the interaction of methane, fluoroform, chloroform, and bromoform with benzene and hexafluorobenzene are presented. The benzene complexes were studied at the MP2/6-31G(d) and MP2/6-311++G(2d,p) levels, and the hexafluorobenzene complexes were only studied at the MP2/6-31G(d) level. The optimized geometries, stabilization energies, potential energy surfaces, harmonic frequencies, and vibrational intensities are reported. A net attraction is predicted for all four benzene complexes, whereas for the CHX3.C6F6 complexes, it was found that MP2/6-31G(d) predicts a net attraction for the CH4, CHCl3, and CHBr3 complexes and does not predict a stable complex for CHF3.C6F6. The three complexes with net attractions all have blue-shifts of the CHX3 CH stretching wavenumber and a slight contraction (0.001-0.003 A) of the CH bond in CHX3. The MP2/6-31G(d) level predicts that the intensity of the CHX3 CH stretch will vary widely. For CH4.C6H6 and CHF3.C6H6, it is predicted that the intensity will be smaller for the complexes than the free molecules, whereas for the other complexes, anywhere from a 30% increase to an increase of 87 times is predicted. The atoms in molecules analysis showed that only three of the eight criteria for normal hydrogen bonding are satisfied for all eight complexes studied. Criterion 3 (value of the Laplacian at the bond critical point) is not satisfied for any of the eight complexes.

SELECTION OF CITATIONS
SEARCH DETAIL