Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
JCI Insight ; 7(15)2022 08 08.
Article in English | MEDLINE | ID: mdl-35737459

ABSTRACT

Older people exhibit dysregulated innate immunity to respiratory viral infections, including influenza and SARS-CoV-2, and show an increase in morbidity and mortality. Nanoparticles are a potential practical therapeutic that could reduce exaggerated innate immune responses within the lungs during viral infection. However, such therapeutics have not been examined for effectiveness during respiratory viral infection, particular in aged hosts. Here, we employed a lethal model of influenza viral infection in vulnerable aged mice to examine the ability of biodegradable, cargo-free nanoparticles, designated ONP-302, to resolve innate immune dysfunction and improve outcomes during infection. We administered ONP-302 via i.v. injection to aged mice at day 3 after infection, when the hyperinflammatory innate immune response was already established. During infection, we found that ONP-302 treatment reduced the numbers of inflammatory monocytes within the lungs and increased their number in both the liver and spleen, without impacting viral clearance. Importantly, cargo-free nanoparticles reduced lung damage, reduced histological lung inflammation, and improved gas exchange and, ultimately, the clinical outcomes in influenza-infected aged mice. In conclusion, ONP-302 improves outcomes in influenza-infected aged mice. Thus, our study provides information concerning a practical therapeutic, which, if translated clinically, could improve disease outcomes for vulnerable older patients suffering from respiratory viral infections.


Subject(s)
COVID-19 , Communicable Diseases , Influenza, Human , Nanoparticles , Orthomyxoviridae Infections , Animals , Humans , Lung/pathology , Mice , Monocytes , SARS-CoV-2
2.
Adv Healthc Mater ; 11(7): e2101534, 2022 04.
Article in English | MEDLINE | ID: mdl-34881524

ABSTRACT

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) remain problematic due to high mortality rates and lack of effective treatments. Neutrophilic injury contributes to mortality in ALI/ARDS. Here, technology for rapid ARDS intervention is developed and evaluated, where intravenous salicylic acid-based polymer microparticles, i.e., Poly-Aspirin (Poly-A), interfere with neutrophils in blood, reducing lung neutrophil infiltration and injury in vivo in mouse models of ALI/ARDS. Importantly, Poly-A particles reduce multiple inflammatory cytokines in the airway and bacterial load in the bloodstream in a live bacteria lung infection model of ARDS, drastically improving survival. It is observed that phagocytosis of the Poly-A microparticles, with salicylic acid in the polymer backbone, alters the neutrophil surface expression of adhesion molecules, potentially contributing to their added therapeutic benefits. Given the proven safety profile of the microparticle degradation products-salicylic acid and adipic acid-it is anticipated that the Poly-A particles represent a therapeutic strategy in ARDS with a rare opportunity for rapid clinical translation.


Subject(s)
Acute Lung Injury , Respiratory Distress Syndrome , Acute Lung Injury/drug therapy , Animals , Mice , Neutrophil Infiltration , Polymers/therapeutic use , Respiratory Distress Syndrome/drug therapy , Salicylic Acid/therapeutic use
3.
Sci Adv ; 7(17)2021 04.
Article in English | MEDLINE | ID: mdl-33883129

ABSTRACT

Vascular-targeted drug carriers must localize to the wall (i.e., marginate) and adhere to a diseased endothelium to achieve clinical utility. The particle size has been reported as a critical physical property prescribing particle margination in vitro and in vivo blood flows. Different transport process steps yield conflicting requirements-microparticles are optimal for margination, but nanoparticles are better for intracellular or tissue delivery. Here, we evaluate deformable hydrogel microparticles as carriers for transporting nanoparticles to a diseased vascular wall. Depending on microparticle modulus, nanoparticle-loaded poly(ethylene glycol)-based hydrogel microparticles delivered significantly more 50-nm nanoparticles to the vessel wall than freely injected nanoparticles alone, resulting in >3000% delivery increase. This work demonstrates the benefit of optimizing microparticles' efficient margination to enhance nanocarriers' transport to the vascular wall.

4.
Eur Respir J ; 56(6)2020 12.
Article in English | MEDLINE | ID: mdl-33033152

ABSTRACT

Cellular senescence permanently arrests the replication of various cell types and contributes to age-associated diseases. In particular, cellular senescence may enhance chronic lung diseases including COPD and idiopathic pulmonary fibrosis. However, the role cellular senescence plays in the pathophysiology of acute inflammatory diseases, especially viral infections, is less well understood. There is evidence that cellular senescence prevents viral replication by increasing antiviral cytokines, but other evidence shows that senescence may enhance viral replication by downregulating antiviral signalling. Furthermore, cellular senescence leads to the secretion of inflammatory mediators, which may either promote host defence or exacerbate immune pathology during viral infections. In this Perspective article, we summarise how senescence contributes to physiology and disease, the role of senescence in chronic lung diseases, and how senescence impacts acute respiratory viral infections. Finally, we develop a potential framework for how senescence may contribute, both positively and negatively, to the pathophysiology of viral respiratory infections, including severe acute respiratory syndrome due to the coronavirus SARS-CoV-2.


Subject(s)
Cellular Senescence , Respiratory Tract Infections/pathology , Respiratory Tract Infections/virology , Virus Diseases/pathology , Virus Diseases/virology , Humans , Lung/pathology
5.
Sci Adv ; 6(24): eaba1474, 2020 06.
Article in English | MEDLINE | ID: mdl-32577517

ABSTRACT

Polymeric particles have recently been used to modulate the behavior of immune cells in the treatment of various inflammatory conditions. However, there is little understanding of how physical particle parameters affect their specific interaction with different leukocyte subtypes. While particle shape is known to be a crucial factor in their phagocytosis by macrophages, where elongated particles are reported to experience reduced uptake, it remains unclear how shape influences phagocytosis by circulating phagocytes, including neutrophils that are the most abundant leukocyte in human blood. In this study, we investigated the phagocytosis of rod-shaped polymeric particles by human neutrophils relative to other leukocytes. In contrast to macrophages and other mononuclear phagocytes, neutrophils were found to exhibit increased internalization of rods in ex vivo and in vivo experimentation. This result suggests that alteration of particle shape can be used to selectively target neutrophils in inflammatory pathologies where these cells play a substantial role.


Subject(s)
Neutrophils , Phagocytosis , Humans , Leukocytes , Macrophages , Phagocytes
6.
J Immunol ; 205(2): 313-320, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32493812

ABSTRACT

Aging impairs immunity to promote diseases, especially respiratory viral infections. The current COVID-19 pandemic, resulting from SARS-CoV-2, induces acute pneumonia, a phenotype that is alarmingly increased with aging. In this article, we review findings of how aging alters immunity to respiratory viral infections to identify age-impacted pathways common to several viral pathogens, permitting us to speculate about potential mechanisms of age-enhanced mortality to COVID-19. Aging generally leads to exaggerated innate immunity, particularly in the form of elevated neutrophil accumulation across murine and large animal studies of influenza infection. COVID-19 patients who succumb exhibit a 2-fold increase in neutrophilia, suggesting that exaggerated innate immunity contributes to age-enhanced mortality to SARS-CoV-2 infection. Further investigation in relevant experimental models will elucidate the mechanisms by which aging impacts respiratory viral infections, including SARS-CoV-2. Such investigation could identify therapies to reduce the suffering of the population at large, but especially among older people, infected with respiratory viruses.


Subject(s)
Aging/pathology , Betacoronavirus/physiology , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , Respiratory Tract Infections/virology , COVID-19 , Cardiovascular Diseases/pathology , Cardiovascular Diseases/virology , Cytokines/immunology , Humans , Influenza, Human/immunology , Influenza, Human/pathology , Pandemics , Respiratory Tract Infections/pathology , Severe acute respiratory syndrome-related coronavirus/physiology , SARS-CoV-2
7.
Arthritis Rheumatol ; 72(1): 114-124, 2020 01.
Article in English | MEDLINE | ID: mdl-31353826

ABSTRACT

OBJECTIVE: While the role of antiphospholipid antibodies in activating endothelial cells has been extensively studied, the impact of these antibodies on the adhesive potential of leukocytes has received less attention. This study was undertaken to investigate the extent to which antiphospholipid syndrome (APS) neutrophils adhere to resting endothelial cells under physiologic flow conditions and the surface molecules required for that adhesion. METHODS: Patients with primary APS (n = 43), patients with a history of venous thrombosis but negative test results for antiphospholipid antibodies (n = 11), and healthy controls (n = 38) were studied. Cells were introduced into a flow chamber and perfused across resting human umbilical vein endothelial cells (HUVECs). Surface adhesion molecules were quantified by flow cytometry. Neutrophil extracellular trap release (NETosis) was assessed in neutrophil-HUVEC cocultures. RESULTS: Upon perfusion of anticoagulated blood through the flow chamber, APS neutrophils demonstrated increased adhesion as compared to control neutrophils under conditions representative of either venous (n = 8; P < 0.05) or arterial (n = 15; P < 0.0001) flow. At the same time, APS neutrophils were characterized by up-regulation of CD64, CEACAM1, ß2 -glycoprotein I, and activated Mac-1 on their surface (n = 12-18; P < 0.05 for all markers). Exposing control neutrophils to APS plasma or APS IgG resulted in increased neutrophil adhesion (n = 10-11; P < 0.0001) and surface marker up-regulation as compared to controls. A monoclonal antibody specific for activated Mac-1 reduced the adhesion of APS neutrophils in the flow-chamber assay (P < 0.01). The same monoclonal antibody reduced NETosis in neutrophil-HUVEC cocultures (P < 0.01). CONCLUSION: APS neutrophils demonstrate increased adhesive potential, which is dependent upon the activated form of Mac-1. In patients, this could lower the threshold for neutrophil-endothelium interactions, NETosis, and possibly thrombotic events.


Subject(s)
Antiphospholipid Syndrome/metabolism , Cell Adhesion , Endothelial Cells/metabolism , Macrophage-1 Antigen/metabolism , Neutrophils/metabolism , Adult , Aged , Case-Control Studies , Extracellular Traps , Female , Human Umbilical Vein Endothelial Cells , Humans , Male , Middle Aged , Young Adult
8.
ACS Biomater Sci Eng ; 5(12): 6530-6540, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-33417805

ABSTRACT

Drug carriers have been widely explored as a method of improving the efficacy of therapeutic drugs for a variety of diseases, including those involving inflammation. However, few of these formulations have advanced past clinical trials. There are still major gaps in our understanding of how drug carriers impact leukocytes, particularly in inflammatory conditions. In this work, we investigated how targeted and nontargeted drug carriers affect the function of leukocytes in blood flow. We explored three primary mechanisms: (1) collisions in blood flow disrupt leukocyte adhesion, (2) specific binding to the endothelium competes with leukocytes for binding sites, and (3) particle phagocytosis alters leukocyte phenotype, resulting in reduced adhesion. We find that each of these mechanisms contributes to significantly reduced leukocyte adhesion to an inflamed endothelium, and that particle phagocytosis may be the most significant driver of this effect. These results are crucial for understanding the totality of the impact of drug carriers on leukocyte behavior and response to inflammation and should inform the future design of any such drug carriers.

9.
Acta Biomater ; 79: 283-293, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30195083

ABSTRACT

Targeted drug carriers are attractive for the delivery of therapeutics directly to the site of a disease, reducing systemic side effects and enhancing the efficacy of therapeutic molecules. However, the use of particulate carriers for drug delivery comes with its own set of challenges and barriers. Among these, a great deal of research effort has focused on protecting carriers from clearance by phagocytes via altering carrier surface chemistry, mostly with the use of polyethylene glycol (PEG) chain coatings. However, few papers have explored the effects of PEGylation on uptake by freshly-obtained primary human phagocytes in physiological conditions. In this work, we investigate the effect of PEGylation on particle uptake by primary human neutrophils in vitro and compare these effects to several cell lines and other model phagocytic cells systems. We find that human neutrophils in whole blood preferentially phagocytose PEGylated particles (e.g., ∼40% particle positive neutrophils for PEGylated versus ∼20% for carboxylated polystyrene microspheres) and that this effect is linked to factors present in human plasma. Model phagocytes internalized PEGylated particles less efficiently or equivalently to carboxylated particles in culture medium but preferentially phagocytosed PEGylated particles in the human plasma (e.g., ∼86% versus ∼63% PEGylated versus carboxylated particle positive cells, respectively). These findings have significant implications for the efficacy of PEGylation in designing long-circulating drug carriers, as well as the need for thorough characterization of drug carrier platforms in a wide array of in vitro and in vivo assays. STATEMENT OF SIGNIFICANCE: The work in this manuscript is highly significant to the field of drug delivery, as it explores in-depth the effects of polyethylene glycol (PEG) coatings, which are frequently used to prevent phagocytic clearance of particulate drug carriers, on the phagocytosis of such carriers by neutrophils, the most abundant leukocyte in blood circulation. Surprisingly, we find that PEGylation enhances uptake by primary human neutrophils, specifically in the presence of human plasma. This result suggests that PEGylation may not confer the benefits in humans once thought, and may help to explain why PEG has not become the "magic bullet" it was once thought to be in the field of particulate drug delivery.


Subject(s)
Drug Carriers/chemistry , Neutrophils/cytology , Phagocytosis , Polyethylene Glycols/chemistry , Animals , Cells, Cultured , Complement System Proteins/metabolism , Endocytosis , Humans , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Neutrophils/metabolism , Plasma/metabolism , Polystyrenes/metabolism , Serum Albumin/metabolism
10.
ACS Nano ; 11(11): 10797-10807, 2017 11 28.
Article in English | MEDLINE | ID: mdl-29028303

ABSTRACT

Although nano- and microparticle therapeutics have been studied for a range of drug delivery applications, the presence of these particles in blood flow may have considerable and understudied consequences to circulating leukocytes, especially neutrophils, which are the largest human leukocyte population. The objective of this work was to establish if particulate drug carriers in circulation interfere with normal neutrophil adhesion and migration. Circulating blood neutrophils in vivo were found to be capable of rapidly binding and sequestering injected carboxylate-modified particles of both 2 and 0.5 µm diameter within the bloodstream. These neutrophil-particle associations within the vasculature were found to suppress neutrophil interactions with an inflamed mesentery vascular wall and hindered neutrophil adhesion. Furthermore, in a model of acute lung injury, intravenously administered drug-free particles reduced normal neutrophil accumulation in the airways of C57BL/6 mice between 52% and 60% versus particle-free mice and between 93% and 98% in BALB/c mice. This suppressed neutrophil migration resulted from particle-induced neutrophil diversion to the liver. These data indicate a considerable acute interaction between injected particles and circulating neutrophils that can drive variations in neutrophil function during inflammation and implicate neutrophil involvement in the clearance process of intravenously injected particle therapeutics. Such an understanding will be critical toward both enhancing designs of drug delivery carriers and developing effective therapeutic interventions in diseases where neutrophils have been implicated.


Subject(s)
Inflammation/blood , Nanoparticles/adverse effects , Neutrophils/drug effects , Animals , Cell Adhesion/drug effects , Cell Movement/drug effects , Humans , Inflammation/chemically induced , Liver/drug effects , Liver/pathology , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neutrophils/chemistry
11.
Article in English | MEDLINE | ID: mdl-27194461

ABSTRACT

Vascular-targeted nanocarriers are an attractive option for the treatment of a number of cardiovascular diseases, as they allow for more specific delivery and increased efficacy of many small molecule drugs. However, immune clearance, limited cellular uptake, and particle-cell dynamics in blood flow can hinder nanocarrier efficacy in many applications. This review aims to investigate successful strategies for the use of vascular-targeted nanocarriers in the treatment of cardiovascular diseases such as atherosclerosis. In particular, the review will highlight strategies employed for actively targeting the components of the atherosclerotic plaque, including endothelial cells, macrophages, and platelets and passive targeting via endothelial permeability, as well as design specifications (such as size, shape, and density) aimed at enhancing the ability of nanocarriers to reach the vascular wall. WIREs Nanomed Nanobiotechnol 2016, 8:909-926. doi: 10.1002/wnan.1414 For further resources related to this article, please visit the WIREs website.


Subject(s)
Atherosclerosis/drug therapy , Drug Carriers , Nanomedicine/methods , Nanoparticles , Animals , Drug Carriers/chemistry , Drug Carriers/therapeutic use , Humans , Mice , Nanoparticles/chemistry , Nanoparticles/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...