Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 279
Filter
1.
bioRxiv ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39091778

ABSTRACT

Constraint-based network modelling is a powerful tool for analysing cellular metabolism at genomic scale. Here, we conducted an integrative analysis of metabolic networks reconstructed from RNA-seq data with paired epigenomic data from the EpiATLAS resource of the International Human Epigenome Consortium (IHEC). Applying a state-of-the-art contextualisation algorithm, we reconstructed metabolic networks across 1,555 samples corresponding to 58 tissues and cell types. Analysis of these networks revealed the distribution of metabolic functionalities across human cell types and provides a compendium of human metabolic activity. This integrative approach allowed us to define, across tissues and cell types, i) reactions that fulfil the basic metabolic processes (core metabolism), and ii) cell type-specific functions (unique metabolism), that shape the metabolic identity of a cell or a tissue. Integration with EpiATLAS-derived cell type-specific gene-level chromatin states and enhancer-gene interactions identified enhancers, transcription factors, and key nodes controlling core and unique metabolism. Transport and first reactions of pathways were enriched for high expression, active chromatin state, and Polycomb-mediated repression in cell types where pathways are inactive, suggesting that key nodes are targets of repression. This integrative analysis forms the basis for identifying regulation points that control metabolic identity in human cells.

2.
Nature ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048816

ABSTRACT

Alzheimer's disease is the leading cause of dementia worldwide, but the cellular pathways that underlie its pathological progression across brain regions remain poorly understood1-3. Here we report a single-cell transcriptomic atlas of six different brain regions in the aged human brain, covering 1.3 million cells from 283 post-mortem human brain samples across 48 individuals with and without Alzheimer's disease. We identify 76 cell types, including region-specific subtypes of astrocytes and excitatory neurons and an inhibitory interneuron population unique to the thalamus and distinct from canonical inhibitory subclasses. We identify vulnerable populations of excitatory and inhibitory neurons that are depleted in specific brain regions in Alzheimer's disease, and provide evidence that the Reelin signalling pathway is involved in modulating the vulnerability of these neurons. We develop a scalable method for discovering gene modules, which we use to identify cell-type-specific and region-specific modules that are altered in Alzheimer's disease and to annotate transcriptomic differences associated with diverse pathological variables. We identify an astrocyte program that is associated with cognitive resilience to Alzheimer's disease pathology, tying choline metabolism and polyamine biosynthesis in astrocytes to preserved cognitive function late in life. Together, our study develops a regional atlas of the ageing human brain and provides insights into cellular vulnerability, response and resilience to Alzheimer's disease pathology.

3.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948789

ABSTRACT

Therapeutics Data Commons (tdcommons.ai) is an open science initiative with unified datasets, AI models, and benchmarks to support research across therapeutic modalities and drug discovery and development stages. The Commons 2.0 (TDC-2) is a comprehensive overhaul of Therapeutic Data Commons to catalyze research in multimodal models for drug discovery by unifying single-cell biology of diseases, biochemistry of molecules, and effects of drugs through multimodal datasets, AI-powered API endpoints, new multimodal tasks and model frameworks, and comprehensive benchmarks. TDC-2 introduces over 1,000 multimodal datasets spanning approximately 85 million cells, pre-calculated embeddings from 5 state-of-the-art single-cell models, and a biomedical knowledge graph. TDC-2 drastically expands the coverage of ML tasks across therapeutic pipelines and 10+ new modalities, spanning but not limited to single-cell gene expression data, clinical trial data, peptide sequence data, peptidomimetics protein-peptide interaction data regarding newly discovered ligands derived from AS-MS spectroscopy, novel 3D structural data for proteins, and cell-type-specific protein-protein interaction networks at single-cell resolution. TDC-2 introduces multimodal data access under an API-first design using the model-view-controller paradigm. TDC-2 introduces 7 novel ML tasks with fine-grained biological contexts: contextualized drug-target identification, single-cell chemical/genetic perturbation response prediction, protein-peptide binding affinity prediction task, and clinical trial outcome prediction task, which introduce antigen-processing-pathway-specific, cell-type-specific, peptide-specific, and patient-specific biological contexts. TDC-2 also releases benchmarks evaluating 15+ state-of-the-art models across 5+ new learning tasks evaluating models on diverse biological contexts and sampling approaches. Among these, TDC-2 provides the first benchmark for context-specific learning. TDC-2, to our knowledge, is also the first to introduce a protein-peptide binding interaction benchmark.

4.
Cell Genom ; : 100605, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38981476

ABSTRACT

Crosstalk between N6-methyladenosine (m6A) and epigenomes is crucial for gene regulation, but its regulatory directionality and disease significance remain unclear. Here, we utilize quantitative trait loci (QTLs) as genetic instruments to delineate directional maps of crosstalk between m6A and two epigenomic traits, DNA methylation (DNAme) and H3K27ac. We identify 47 m6A-to-H3K27ac and 4,733 m6A-to-DNAme and, in the reverse direction, 106 H3K27ac-to-m6A and 61,775 DNAme-to-m6A regulatory loci, with differential genomic location preference observed for different regulatory directions. Integrating these maps with complex diseases, we prioritize 20 genome-wide association study (GWAS) loci for neuroticism, depression, and narcolepsy in brain; 1,767 variants for asthma and expiratory flow traits in lung; and 249 for coronary artery disease, blood pressure, and pulse rate in muscle. This study establishes disease regulatory paths, such as rs3768410-DNAme-m6A-asthma and rs56104944-m6A-DNAme-hypertension, uncovering locus-specific crosstalk between m6A and epigenomic layers and offering insights into regulatory circuits underlying human diseases.

5.
Sci Adv ; 10(27): eado2365, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38959302

ABSTRACT

Pityriasis rubra pilaris (PRP) is a rare inflammatory skin disease with a poorly understood pathogenesis. Through a molecularly driven precision medicine approach and an extensive mechanistic pathway analysis in PRP skin samples, compared to psoriasis, atopic dermatitis, healed PRP, and healthy controls, we identified IL-1ß as a key mediator, orchestrating an NF-κB-mediated IL-1ß-CCL20 axis, including activation of CARD14 and NOD2. Treatment of three patients with the IL-1 antagonists anakinra and canakinumab resulted in rapid clinical improvement and reversal of the PRP-associated molecular signature with a 50% improvement in skin lesions after 2 to 3 weeks. This transcriptional signature was consistent with in vitro stimulation of keratinocytes with IL-1ß. With the central role of IL-1ß underscoring its potential as a therapeutic target, our findings propose a redefinition of PRP as an autoinflammatory keratinization disorder. Further clinical trials are needed to validate the efficacy of IL-1ß antagonists in PRP.


Subject(s)
Antibodies, Monoclonal, Humanized , Interleukin 1 Receptor Antagonist Protein , Interleukin-1beta , Keratinocytes , Pityriasis Rubra Pilaris , Humans , Pityriasis Rubra Pilaris/drug therapy , Pityriasis Rubra Pilaris/pathology , Pityriasis Rubra Pilaris/genetics , Interleukin-1beta/metabolism , Interleukin-1beta/antagonists & inhibitors , Interleukin 1 Receptor Antagonist Protein/therapeutic use , Keratinocytes/metabolism , Keratinocytes/drug effects , Keratinocytes/pathology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/pharmacology , Male , NF-kappa B/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/genetics , Nod2 Signaling Adaptor Protein/antagonists & inhibitors , Female , CARD Signaling Adaptor Proteins/metabolism , CARD Signaling Adaptor Proteins/genetics , Skin/pathology , Skin/metabolism , Skin/drug effects , Interleukin-1/antagonists & inhibitors , Interleukin-1/metabolism , Interleukin-1/genetics , Middle Aged , Guanylate Cyclase/metabolism , Guanylate Cyclase/antagonists & inhibitors , Guanylate Cyclase/genetics , Adult , Signal Transduction/drug effects , Membrane Proteins
6.
bioRxiv ; 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38979214

ABSTRACT

Loss-of-function (LoF) variants in the lipid transporter ABCA7 significantly increase the risk of Alzheimer's disease (odds ratio ∼2), yet the pathogenic mechanisms and the neural cell types affected by these variants remain largely unknown. Here, we performed single-nuclear RNA sequencing of 36 human post-mortem samples from the prefrontal cortex of 12 ABCA7 LoF carriers and 24 matched non-carrier control individuals. ABCA7 LoF was associated with gene expression changes in all major cell types. Excitatory neurons, which expressed the highest levels of ABCA7, showed transcriptional changes related to lipid metabolism, mitochondrial function, cell cycle-related pathways, and synaptic signaling. ABCA7 LoF-associated transcriptional changes in neurons were similarly perturbed in carriers of the common AD missense variant ABCA7 p.Ala1527Gly (n = 240 controls, 135 carriers), indicating that findings from our study may extend to large portions of the at-risk population. Consistent with ABCA7's function as a lipid exporter, lipidomic analysis of isogenic iPSC-derived neurons (iNs) revealed profound intracellular triglyceride accumulation in ABCA7 LoF, which was accompanied by a relative decrease in phosphatidylcholine abundance. Metabolomic and biochemical analyses of iNs further indicated that ABCA7 LoF was associated with disrupted mitochondrial bioenergetics that suggested impaired lipid breakdown by uncoupled respiration. Treatment of ABCA7 LoF iNs with CDP-choline (a rate-limiting precursor of phosphatidylcholine synthesis) reduced triglyceride accumulation and restored mitochondrial function, indicating that ABCA7 LoF-induced phosphatidylcholine dyshomeostasis may directly disrupt mitochondrial metabolism of lipids. Treatment with CDP-choline also rescued intracellular amyloid ß -42 levels in ABCA7 LoF iNs, further suggesting a link between ABCA7 LoF metabolic disruptions in neurons and AD pathology. This study provides a detailed transcriptomic atlas of ABCA7 LoF in the human brain and mechanistically links ABCA7 LoF-induced lipid perturbations to neuronal energy dyshomeostasis. In line with a growing body of evidence, our study highlights the central role of lipid metabolism in the etiology of Alzheimer's disease.

7.
Biophys Rep (N Y) ; 4(3): 100167, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38909903

ABSTRACT

Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. In addition, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from noncoding ones in otherwise ambiguous cases.

8.
Nat Commun ; 15(1): 4433, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38811555

ABSTRACT

Dominance heritability in complex traits has received increasing recognition. However, most polygenic score (PGS) approaches do not incorporate non-additive effects. Here, we present GenoBoost, a flexible PGS modeling framework capable of considering both additive and non-additive effects, specifically focusing on genetic dominance. Building on statistical boosting theory, we derive provably optimal GenoBoost scores and provide its efficient implementation for analyzing large-scale cohorts. We benchmark it against seven commonly used PGS methods and demonstrate its competitive predictive performance. GenoBoost is ranked the best for four traits and second-best for three traits among twelve tested disease outcomes in UK Biobank. We reveal that GenoBoost improves prediction for autoimmune diseases by incorporating non-additive effects localized in the MHC locus and, more broadly, works best in less polygenic traits. We further demonstrate that GenoBoost can infer the mode of genetic inheritance without requiring prior knowledge. For example, GenoBoost finds non-zero genetic dominance effects for 602 of 900 selected genetic variants, resulting in 2.5% improvements in predicting psoriasis cases. Lastly, we show that GenoBoost can prioritize genetic loci with genetic dominance not previously reported in the GWAS catalog. Our results highlight the increased accuracy and biological insights from incorporating non-additive effects in PGS models.


Subject(s)
Genome-Wide Association Study , Models, Genetic , Multifactorial Inheritance , Multifactorial Inheritance/genetics , Humans , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide , Genetic Predisposition to Disease , Autoimmune Diseases/genetics , Genes, Dominant , Psoriasis/genetics
9.
Cell Rep Med ; 5(5): 101556, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38776872

ABSTRACT

Cardiovascular disease plays a central role in the electrical and structural remodeling of the right atrium, predisposing to arrhythmias, heart failure, and sudden death. Here, we dissect with single-nuclei RNA sequencing (snRNA-seq) and spatial transcriptomics the gene expression changes in the human ex vivo right atrial tissue and pericardial fluid in ischemic heart disease, myocardial infarction, and ischemic and non-ischemic heart failure using asymptomatic patients with valvular disease who undergo preventive surgery as the control group. We reveal substantial differences in disease-associated gene expression in all cell types, collectively suggesting inflammatory microvascular dysfunction and changes in the right atrial tissue composition as the valvular and vascular diseases progress into heart failure. The data collectively suggest that investigation of human cardiovascular disease should expand to all functionally important parts of the heart, which may help us to identify mechanisms promoting more severe types of the disease.


Subject(s)
Heart Atria , Microvessels , Myocardial Ischemia , Transcriptome , Humans , Heart Atria/pathology , Heart Atria/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/pathology , Myocardial Ischemia/metabolism , Transcriptome/genetics , Microvessels/pathology , Inflammation/pathology , Inflammation/genetics , Male , Female , Middle Aged , Aged , Gene Expression Regulation
10.
Science ; 384(6698): eadg5136, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38781388

ABSTRACT

The complexity and heterogeneity of schizophrenia have hindered mechanistic elucidation and the development of more effective therapies. Here, we performed single-cell dissection of schizophrenia-associated transcriptomic changes in the human prefrontal cortex across 140 individuals in two independent cohorts. Excitatory neurons were the most affected cell group, with transcriptional changes converging on neurodevelopment and synapse-related molecular pathways. Transcriptional alterations included known genetic risk factors, suggesting convergence of rare and common genomic variants on neuronal population-specific alterations in schizophrenia. Based on the magnitude of schizophrenia-associated transcriptional change, we identified two populations of individuals with schizophrenia marked by expression of specific excitatory and inhibitory neuronal cell states. This single-cell atlas links transcriptomic changes to etiological genetic risk factors, contextualizing established knowledge within the human cortical cytoarchitecture and facilitating mechanistic understanding of schizophrenia pathophysiology and heterogeneity.


Subject(s)
Genetic Predisposition to Disease , Neuroglia , Neurons , Prefrontal Cortex , Schizophrenia , Single-Cell Analysis , Adult , Female , Humans , Male , Cohort Studies , Neurons/metabolism , Prefrontal Cortex/metabolism , Risk Factors , Schizophrenia/genetics , Synapses/metabolism , Transcriptome , Young Adult , Middle Aged , Aged , Aged, 80 and over , Neuroglia/metabolism
11.
Nat Commun ; 15(1): 4163, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755145

ABSTRACT

TAR DNA-binding protein 43 (TDP-43) proteinopathy in brain cells is the hallmark of amyotrophic lateral sclerosis (ALS) but its cause remains elusive. Asparaginase-like-1 protein (ASRGL1) cleaves isoaspartates, which alter protein folding and susceptibility to proteolysis. ASRGL1 gene harbors a copy of the human endogenous retrovirus HML-2, whose overexpression contributes to ALS pathogenesis. Here we show that ASRGL1 expression was diminished in ALS brain samples by RNA sequencing, immunohistochemistry, and western blotting. TDP-43 and ASRGL1 colocalized in neurons but, in the absence of ASRGL1, TDP-43 aggregated in the cytoplasm. TDP-43 was found to be prone to isoaspartate formation and a substrate for ASRGL1. ASRGL1 silencing triggered accumulation of misfolded, fragmented, phosphorylated and mislocalized TDP-43 in cultured neurons and motor cortex of female mice. Overexpression of ASRGL1 restored neuronal viability. Overexpression of HML-2 led to ASRGL1 silencing. Loss of ASRGL1 leading to TDP-43 aggregation may be a critical mechanism in ALS pathophysiology.


Subject(s)
Amyotrophic Lateral Sclerosis , DNA-Binding Proteins , Neurons , TDP-43 Proteinopathies , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Animals , Humans , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Mice , Female , TDP-43 Proteinopathies/metabolism , TDP-43 Proteinopathies/pathology , TDP-43 Proteinopathies/genetics , Neurons/metabolism , Neurons/pathology , Brain/metabolism , Brain/pathology , Male , Motor Cortex/metabolism , Motor Cortex/pathology
12.
bioRxiv ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38712250

ABSTRACT

Mucosal melanoma (MM) is a deadly cancer derived from mucosal melanocytes. To test the consequences of MM genetics, we developed a zebrafish model in which all melanocytes experienced CCND1 expression and loss of PTEN and TP53. Surprisingly, melanoma only developed from melanocytes lining internal organs, analogous to the location of patient MM. We found that zebrafish MMs had a unique chromatin landscape from cutaneous melanoma. Internal melanocytes could be labeled using a MM-specific transcriptional enhancer. Normal zebrafish internal melanocytes shared a gene expression signature with MMs. Patient and zebrafish MMs have increased migratory neural crest gene and decreased antigen presentation gene expression, consistent with the increased metastatic behavior and decreased immunotherapy sensitivity of MM. Our work suggests the cell state of the originating melanocyte influences the behavior of derived melanomas. Our animal model phenotypically and transcriptionally mimics patient tumors, allowing this model to be used for MM therapeutic discovery.

13.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38706317

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) enables the exploration of cellular heterogeneity by analyzing gene expression profiles in complex tissues. However, scRNA-seq data often suffer from technical noise, dropout events and sparsity, hindering downstream analyses. Although existing works attempt to mitigate these issues by utilizing graph structures for data denoising, they involve the risk of propagating noise and fall short of fully leveraging the inherent data relationships, relying mainly on one of cell-cell or gene-gene associations and graphs constructed by initial noisy data. To this end, this study presents single-cell bilevel feature propagation (scBFP), two-step graph-based feature propagation method. It initially imputes zero values using non-zero values, ensuring that the imputation process does not affect the non-zero values due to dropout. Subsequently, it denoises the entire dataset by leveraging gene-gene and cell-cell relationships in the respective steps. Extensive experimental results on scRNA-seq data demonstrate the effectiveness of scBFP in various downstream tasks, uncovering valuable biological insights.


Subject(s)
Sequence Analysis, RNA , Single-Cell Analysis , Single-Cell Analysis/methods , Sequence Analysis, RNA/methods , Humans , Algorithms , Gene Expression Profiling/methods , Computational Biology/methods , RNA-Seq/methods
14.
bioRxiv ; 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38659920

ABSTRACT

Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. Additionally, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from non-coding ones in otherwise ambiguous cases.

15.
Cell ; 187(8): 1971-1989.e16, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38521060

ABSTRACT

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) share many clinical, pathological, and genetic features, but a detailed understanding of their associated transcriptional alterations across vulnerable cortical cell types is lacking. Here, we report a high-resolution, comparative single-cell molecular atlas of the human primary motor and dorsolateral prefrontal cortices and their transcriptional alterations in sporadic and familial ALS and FTLD. By integrating transcriptional and genetic information, we identify known and previously unidentified vulnerable populations in cortical layer 5 and show that ALS- and FTLD-implicated motor and spindle neurons possess a virtually indistinguishable molecular identity. We implicate potential disease mechanisms affecting these cell types as well as non-neuronal drivers of pathogenesis. Finally, we show that neuron loss in cortical layer 5 tracks more closely with transcriptional identity rather than cellular morphology and extends beyond previously reported vulnerable cell types.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Lobar Degeneration , Prefrontal Cortex , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Frontotemporal Dementia/genetics , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Frontotemporal Lobar Degeneration/pathology , Gene Expression Profiling , Neurons/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Single-Cell Gene Expression Analysis
16.
Nat Commun ; 15(1): 2790, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38555308

ABSTRACT

Analysis of DNA methylation in cell-free DNA reveals clinically relevant biomarkers but requires specialized protocols such as whole-genome bisulfite sequencing. Meanwhile, millions of cell-free DNA samples are being profiled by whole-genome sequencing. Here, we develop FinaleMe, a non-homogeneous Hidden Markov Model, to predict DNA methylation of cell-free DNA and, therefore, tissues-of-origin, directly from plasma whole-genome sequencing. We validate the performance with 80 pairs of deep and shallow-coverage whole-genome sequencing and whole-genome bisulfite sequencing data.


Subject(s)
Cell-Free Nucleic Acids , DNA Methylation , DNA Methylation/genetics , Whole Genome Sequencing/methods , Sulfites , Cell-Free Nucleic Acids/genetics , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing
17.
Brain Behav Immun Health ; 36: 100743, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38435720

ABSTRACT

Alzheimer's disease (AD) involves a complex pathological process that evolves over years, and its etiology is understood as a classic example of gene-environment interaction. The notion that exposure to microbial organisms may play some role in AD pathology has been proposed and debated for decades. New evidence from model organisms and -omic studies, as well as epidemiological data from the recent COVID-19 pandemic and widespread use of vaccines, offers new insights into the "germ hypothesis" of AD. To review new evidence and identify key research questions, the Duke/University of North Carolina (Duke/UNC) Alzheimer's Disease Research Center hosted a virtual symposium and workshop: "New Approaches for Understanding the Potential Role of Microbes in Alzheimer's disease." Discussion centered around the antimicrobial protection hypothesis of amyloid accumulation, and other mechanisms by which microbes could influence AD pathology including immune cell activation, changes in blood-brain barrier, or direct neurotoxicity. This summary of proceedings reviews the content presented in the symposium and provides a summary of major topics and key questions discussed in the workshop.

18.
Sci Transl Med ; 16(737): eadf4601, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38446899

ABSTRACT

Patients with cancer undergoing chemotherapy frequently experience a neurological condition known as chemotherapy-related cognitive impairment, or "chemobrain," which can persist for the remainder of their lives. Despite the growing prevalence of chemobrain, both its underlying mechanisms and treatment strategies remain poorly understood. Recent findings suggest that chemobrain shares several characteristics with neurodegenerative diseases, including chronic neuroinflammation, DNA damage, and synaptic loss. We investigated whether a noninvasive sensory stimulation treatment we term gamma entrainment using sensory stimuli (GENUS), which has been shown to alleviate aberrant immune and synaptic pathologies in mouse models of neurodegeneration, could also mitigate chemobrain phenotypes in mice administered a chemotherapeutic drug. When administered concurrently with the chemotherapeutic agent cisplatin, GENUS alleviated cisplatin-induced brain pathology, promoted oligodendrocyte survival, and improved cognitive function in a mouse model of chemobrain. These effects persisted for up to 105 days after GENUS treatment, suggesting the potential for long-lasting benefits. However, when administered to mice 90 days after chemotherapy, GENUS treatment only provided limited benefits, indicating that it was most effective when used to prevent the progression of chemobrain pathology. Furthermore, we demonstrated that the effects of GENUS in mice were not limited to cisplatin-induced chemobrain but also extended to methotrexate-induced chemobrain. Collectively, these findings suggest that GENUS may represent a versatile approach for treating chemobrain induced by different chemotherapy agents.


Subject(s)
Chemotherapy-Related Cognitive Impairment , Cognitive Dysfunction , Humans , Animals , Mice , Cisplatin/adverse effects , Cognition , DNA Damage , Disease Models, Animal
19.
bioRxiv ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38405985

ABSTRACT

A central problem in cancer immunotherapy with immune checkpoint blockade (ICB) is the development of resistance, which affects 50% of patients with metastatic melanoma1,2. T cell exhaustion, resulting from chronic antigen exposure in the tumour microenvironment, is a major driver of ICB resistance3. Here, we show that CD38, an ecto-enzyme involved in nicotinamide adenine dinucleotide (NAD+) catabolism, is highly expressed in exhausted CD8+ T cells in melanoma and is associated with ICB resistance. Tumour-derived CD38hiCD8+ T cells are dysfunctional, characterised by impaired proliferative capacity, effector function, and dysregulated mitochondrial bioenergetics. Genetic and pharmacological blockade of CD38 in murine and patient-derived organotypic tumour models (MDOTS/PDOTS) enhanced tumour immunity and overcame ICB resistance. Mechanistically, disrupting CD38 activity in T cells restored cellular NAD+ pools, improved mitochondrial function, increased proliferation, augmented effector function, and restored ICB sensitivity. Taken together, these data demonstrate a role for the CD38-NAD+ axis in promoting T cell exhaustion and ICB resistance, and establish the efficacy of CD38 directed therapeutic strategies to overcome ICB resistance using clinically relevant, patient-derived 3D tumour models.

20.
Elife ; 122024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319699

ABSTRACT

Mapping the connectivity of diverse neuronal types provides the foundation for understanding the structure and function of neural circuits. High-throughput and low-cost neuroanatomical techniques based on RNA barcode sequencing have the potential to map circuits at cellular resolution and a brain-wide scale, but existing Sindbis virus-based techniques can only map long-range projections using anterograde tracing approaches. Rabies virus can complement anterograde tracing approaches by enabling either retrograde labeling of projection neurons or monosynaptic tracing of direct inputs to genetically targeted postsynaptic neurons. However, barcoded rabies virus has so far been only used to map non-neuronal cellular interactions in vivo and synaptic connectivity of cultured neurons. Here we combine barcoded rabies virus with single-cell and in situ sequencing to perform retrograde labeling and transsynaptic labeling in the mouse brain. We sequenced 96 retrogradely labeled cells and 295 transsynaptically labeled cells using single-cell RNA-seq, and 4130 retrogradely labeled cells and 2914 transsynaptically labeled cells in situ. We found that the transcriptomic identities of rabies virus-infected cells can be robustly identified using both single-cell RNA-seq and in situ sequencing. By associating gene expression with connectivity inferred from barcode sequencing, we distinguished long-range projecting cortical cell types from multiple cortical areas and identified cell types with converging or diverging synaptic connectivity. Combining in situ sequencing with barcoded rabies virus complements existing sequencing-based neuroanatomical techniques and provides a potential path for mapping synaptic connectivity of neuronal types at scale.


In the brain, messages are relayed from one cell to the next through intricate networks of axons and dendrites that physically interact at junctions known as synapses. Mapping out this synaptic connectivity ­ that is, exactly which neurons are connected via synapses ­ remains a major challenge. Monosynaptic tracing is a powerful approach that allows neuroscientists to explore neural networks by harnessing viruses which spread between neurons via synapses, in particular the rabies virus. This pathogen travels exclusively from 'postsynaptic' to 'presynaptic' neurons ­ from the cell that receives a message at a synapse, back to the one that sends it. A modified variant of the rabies virus can therefore be used to reveal the presynaptic cells connecting to a population of neurons in which it has been originally introduced. However, this method does not allow scientists to identify the exact postsynaptic neuron that each presynaptic cell is connected to. One way to bypass this issue is to combine monosynaptic tracing with RNA barcoding to create distinct versions of the modified rabies virus, which are then introduced into separate populations of neurons. Tracking the spread of each version allows neuroscientists to spot exactly which presynaptic cells signal to each postsynaptic neuron. So far, this approach has been used to examine synaptic connectivity in neurons grown in the laboratory, but it remains difficult to apply it to neurons in the brain. In response, Zhang, Jin et al. aimed to demonstrate how monosynaptic tracing that relies on barcoded rabies viruses could be used to dissect neural networks in the mouse brain. First, they confirmed that it was possible to accurately detect which version of the virus had spread to presynaptic neurons using both in situ and single-cell RNA sequencing. Next, they described how this information could be analysed to build models of potential neural networks, and what type of additional experiments are required for this work. Finally, they used the approach to identify neurons that tend to connect to the same postsynaptic cells and then investigated what these have in common, showing how the technique enables a finer understanding of neural circuits. Overall, the work by Zhang, Jin et al. provides a comprehensive review of the requirements and limitations associated with monosynaptic tracing experiments based on barcoded rabies viruses, as well as how the approach could be optimized in the future. This information will be of broad interest to scientists interested in mapping neural networks in the brain.


Subject(s)
Rabies virus , Animals , Mice , Rabies virus/genetics , Neuroanatomy , Neurons , Sequence Analysis, RNA , RNA
SELECTION OF CITATIONS
SEARCH DETAIL