Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Microbiol ; 26(5): e16636, 2024 May.
Article in English | MEDLINE | ID: mdl-38783572

ABSTRACT

Fusarium wilt of bananas (FWB) is a severe plant disease that leads to substantial losses in banana production worldwide. It remains a major concern for Cuban banana cultivation. The disease is caused by members of the soil-borne Fusarium oxysporum species complex. However, the genetic diversity among Fusarium species infecting bananas in Cuba has remained largely unexplored. In our comprehensive survey, we examined symptomatic banana plants across all production zones in the country, collecting 170 Fusarium isolates. Leveraging genotyping-by-sequencing and whole-genome comparisons, we investigated the genetic diversity within these isolates and compared it with a global Fusarium panel. Notably, typical FWB symptoms were observed in Bluggoe cooking bananas and Pisang Awak subgroups across 14 provinces. Our phylogenetic analysis revealed that F. purpurascens, F. phialophorum, and F. tardichlamydosporum are responsible for FWB in Cuba, with F. tardichlamydosporum dominating the population. Furthermore, we identified between five and seven distinct genetic clusters, with F. tardichlamydosporum isolates forming at least two subgroups. This finding underscores the high genetic diversity of Fusarium spp. contributing to FWB in the Americas. Our study sheds light on the population genetic structure and diversity of the FWB pathogen in Cuba and the broader Latin American and Caribbean regions.


Subject(s)
Fusarium , Genetic Variation , Musa , Phylogeny , Plant Diseases , Fusarium/genetics , Fusarium/classification , Fusarium/pathogenicity , Fusarium/isolation & purification , Musa/microbiology , Cuba , Plant Diseases/microbiology , Caribbean Region , Latin America
2.
Phytopathology ; 114(1): 111-118, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37311735

ABSTRACT

Bananas are major agricultural commodities in Cuba. One of the main constraints of banana production worldwide is Fusarium wilt of banana. Recent outbreaks in Colombia, Perú, and Venezuela have raised widespread concern in Latin America due to the potential devastating impact on the sustainability of banana production, food security, and livelihoods of millions of people in the region. Here, we phenotyped 18 important Cuban banana and plantain varieties with two Fusarium strains-Tropical Race 4 (TR4) and Race 1-under greenhouse conditions. These varieties represent 72.8% of the national banana acreage in Cuba and are also widely distributed in Latin America and the Caribbean region. A broad range of disease responses from resistant to very susceptible was observed against Race 1. On the contrary, not a single banana variety was resistant to TR4. These results underscore that TR4 potentially threatens nearly 56% of the contemporary Cuban banana production area, which is planted with susceptible and very susceptible varieties, and call for a preemptive evaluation of new varieties obtained in the national breeding program and the strengthening of quarantine measures to prevent the introduction of TR4 into the country.


Subject(s)
Fusarium , Musa , Humans , Fusarium/physiology , Plant Diseases/prevention & control , Plant Breeding , Phenotype
3.
Pest Manag Sci ; 77(7): 3273-3288, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33764651

ABSTRACT

BACKGROUND: Pseudocercospora fijiensis is the causal agent of the black leaf streak disease (BLSD) of banana. Bananas are important global export commodities and a major staple food. Their susceptibility to BLSD pushes disease management towards excessive fungicide use, largely relying on multisite inhibitors and sterol demethylation inhibitors (DMIs). These fungicides are ubiquitous in plant disease control, targeting the CYP51 enzyme. We examined sensitivity to DMIs in P. fijiensis field isolates collected from various major banana production zones in Colombia, Costa Rica, Dominican Republic, Ecuador, the Philippines, Guadalupe, Martinique and Cameroon and determined the underlying genetic reasons for the observed phenotypes. RESULTS: We observed a continuous range of sensitivity towards the DMI fungicides difenoconazole, epoxiconazole and propiconazole with clear cross-sensitivity. Sequence analyses of PfCYP51 in 266 isolates showed 28 independent amino acid substitutions, nine of which correlated with reduced sensitivity to DMIs. In addition to the mutations, we observed up to six insertions in the Pfcyp51 promoter. Such promoter insertions contain repeated elements with a palindromic core and correlate with the enhanced expression of Pfcyp51 and hence with reduced DMI sensitivity. Wild-type isolates from unsprayed bananas fields did not contain any promoter insertions. CONCLUSION: The presented data significantly contribute to understanding of the evolution and global distribution of DMI resistance mechanisms in P. fijiensis field populations and facilitate the prediction of different DMI efficacy. The overall reduced DMI sensitivity calls for the deployment of a wider range of solutions for sustainable control of this major banana disease. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Fungicides, Industrial , Musa , Ascomycota , Cameroon , Colombia , Costa Rica , Fungicides, Industrial/pharmacology , Philippines
4.
PLoS One ; 14(10): e0223858, 2019.
Article in English | MEDLINE | ID: mdl-31622393

ABSTRACT

The haploid fungus Pseudocercospora fijiensis causes black Sigatoka in banana and is chiefly controlled by extensive fungicide applications, threatening occupational health and the environment. The 14α-Demethylase Inhibitors (DMIs) are important disease control fungicides, but they lose sensitivity in a rather gradual fashion, suggesting an underlying polygenic genetic mechanism. In spite of this, evidence found thus far suggests that P. fijiensis cyp51 gene mutations are the main responsible factor for sensitivity loss in the field. To better understand the mechanisms involved in DMI resistance, in this study we constructed a genetic map using DArTseq markers on two F1 populations generated by crossing two different DMI resistant strains with a sensitive strain. Analysis of the inheritance of DMI resistance in the F1 populations revealed two major and discrete DMI-sensitivity groups. This is an indicative of a single major responsible gene. Using the DMI-sensitivity scorings of both F1 populations and the generation of genetic linkage maps, the sensitivity causal factor was located in a single genetic region. Full agreement was found for genetic markers in either population, underlining the robustness of the approach. The two maps indicated a similar genetic region where the Pfcyp51 gene is found. Sequence analyses of the Pfcyp51 gene of the F1 populations also revealed a matching bimodal distribution with the DMI resistant. Amino acid substitutions in P. fijiensis CYP51 enzyme of the resistant progeny were previously correlated with the loss of DMI sensitivity. In addition, the resistant progeny inherited a Pfcyp51 gene promoter insertion, composed of a repeat element with a palindromic core, also previously correlated with increased gene expression. This genetic approach confirms that Pfcyp51 is the single explanatory gene for reduced sensitivity to DMI fungicides in the analysed P. fijiensis strains. Our study is the first genetic analysis to map the underlying genetic factors for reduced DMI efficacy.


Subject(s)
14-alpha Demethylase Inhibitors/metabolism , Ascomycota/genetics , Fungal Proteins/metabolism , Fungicides, Industrial/metabolism , Musa/microbiology , Sterol 14-Demethylase/metabolism , 14-alpha Demethylase Inhibitors/pharmacology , Ascomycota/drug effects , Ascomycota/isolation & purification , Drug Resistance, Fungal/genetics , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/genetics , Fungicides, Industrial/pharmacology , Genetic Linkage , Musa/metabolism , Mutation , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Promoter Regions, Genetic , Sterol 14-Demethylase/chemistry , Sterol 14-Demethylase/genetics
5.
Front Plant Sci ; 10: 1006, 2019.
Article in English | MEDLINE | ID: mdl-31447871

ABSTRACT

Fusarium oxysporum (Fo) belongs to a group of soil-borne hyphomycetes that are taxonomically collated in the Fusarium oxysporum Species Complex (FOSC). Hitherto, those infecting bananas were placed in the forma specialis cubense (Foc). Recently, however, these genetically different Foc lineages were recognized as new Fusarium spp. placed in the Fusarium of Banana Complex (FOBC). A member of this complex F. odoratissimum II-5 that uniquely comprises the so-called Tropical Race 4 (TR4), is a major problem sweeping through production zones of Cavendish banana in several regions of the world. Because of this, there is an urgent need for a phenotyping method that allows the screening for resistance to TR4 of large numbers of banana genotypes. Most Fusarium species produce three types of spores: macroconidia, microconidia and the persistent chlamydospores that can contaminate soils for many years. Inoculum production has been an important bottleneck for efficient phenotyping due to the low or variable number of conidia and the elaborate laboratory procedures requiring specific infrastructure. Here, we report a rapid, simple and high-yielding spore production method for nine F. oxysporum formae speciales as well as the biocontrol species Fo47 and Fo618-12. For Fusarium spp. causing Fusarium wilt or Panama disease of banana, we used the protocol for four species comprising the recognized physiological races, including Tropical Race 4 (TR4). We subsequently tested the produced inoculum in comparative inoculation trials on banana plants to evaluate their efficiency. All assays resulted in typical symptoms within 10 weeks; significant differences in final disease ratings were observed, depending on inoculum concentration. Pouring inoculum directly onto banana plants showed the most consistent and reproducible results, as expressed in external wilting, internal discoloration and determined by real-time PCR assays on entire rhizomes. Moreover, this method allows the inoculation of 250 plants per hour by one individual thereby facilitating the phenotyping of large mutant and breeding populations.

6.
PLoS Genet ; 12(8): e1005876, 2016 08.
Article in English | MEDLINE | ID: mdl-27512984

ABSTRACT

Black Sigatoka or black leaf streak disease, caused by the Dothideomycete fungus Pseudocercospora fijiensis (previously: Mycosphaerella fijiensis), is the most significant foliar disease of banana worldwide. Due to the lack of effective host resistance, management of this disease requires frequent fungicide applications, which greatly increase the economic and environmental costs to produce banana. Weekly applications in most banana plantations lead to rapid evolution of fungicide-resistant strains within populations causing disease-control failures throughout the world. Given its extremely high economic importance, two strains of P. fijiensis were sequenced and assembled with the aid of a new genetic linkage map. The 74-Mb genome of P. fijiensis is massively expanded by LTR retrotransposons, making it the largest genome within the Dothideomycetes. Melting-curve assays suggest that the genomes of two closely related members of the Sigatoka disease complex, P. eumusae and P. musae, also are expanded. Electrophoretic karyotyping and analyses of molecular markers in P. fijiensis field populations showed chromosome-length polymorphisms and high genetic diversity. Genetic differentiation was also detected using neutral markers, suggesting strong selection with limited gene flow at the studied geographic scale. Frequencies of fungicide resistance in fungicide-treated plantations were much higher than those in untreated wild-type P. fijiensis populations. A homologue of the Cladosporium fulvum Avr4 effector, PfAvr4, was identified in the P. fijiensis genome. Infiltration of the purified PfAVR4 protein into leaves of the resistant banana variety Calcutta 4 resulted in a hypersensitive-like response. This result suggests that Calcutta 4 could carry an unknown resistance gene recognizing PfAVR4. Besides adding to our understanding of the overall Dothideomycete genome structures, the P. fijiensis genome will aid in developing fungicide treatment schedules to combat this pathogen and in improving the efficiency of banana breeding programs.


Subject(s)
Ascomycota/genetics , Disease Resistance/genetics , Musa/genetics , Plant Diseases/genetics , Plant Leaves/genetics , Ascomycota/pathogenicity , Breeding , Chromosomes, Fungal/genetics , Genetic Variation , Genome, Fungal , Genotype , Musa/growth & development , Musa/microbiology , Plant Diseases/microbiology , Plant Leaves/microbiology , Retroelements/genetics
SELECTION OF CITATIONS
SEARCH DETAIL