Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
PLoS One ; 16(4): e0249261, 2021.
Article in English | MEDLINE | ID: mdl-33831065

ABSTRACT

Subclinical bacterial infections (biofilms) are strongly implicated in breast augmentation failure due to capsular contracture, and while these infections are generally ascribed to common skin commensals, this remains largely unsubstantiated through robust cultivation independent analyses. To determine capsule biofilm microbial community compositions, we employed amplicon sequencing of the 16S rRNA gene using DNA extracted from breast implant capsule samples. These cultivation independent analyses revealed that capsule associated biofilms are more diverse than canonical single-species infections, but have relatively low diversity (~ <100 species) compared to many host-associated microbial communities. In addition to taxa commonly associated with capsular contracture, the biofilms analyzed comprised a number of taxa that escaped detection in cultivation-dependent work. We have also isolated several key taxa identified through the culture-independent analyses. Together our analyses reveal that capsule biofilms are more diverse than cultivation studies suggest and can be heterogeneous within an individual capsule, between breasts of the same patient, across similar implant types, and over a range in severity of contracture. The complex nature of these communities requires further study across a broader suite of patients in addition to higher resolution analyses including metagenomics to better assess the fundamental role of microorganisms in capsular contracture.


Subject(s)
Biofilms , Breast Implants/microbiology , Implant Capsular Contracture/microbiology , Microbiota , Capsules , Humans
2.
Sci Adv ; 5(11): eaav2869, 2019 11.
Article in English | MEDLINE | ID: mdl-31807693

ABSTRACT

Banded iron formation (BIF) deposition was the likely result of oxidation of ferrous iron in seawater by either oxygenic photosynthesis or iron-dependent anoxygenic photosynthesis-photoferrotrophy. BIF deposition, however, remains enigmatic because the photosynthetic biomass produced during iron oxidation is conspicuously absent from BIFs. We have addressed this enigma through experiments with photosynthetic bacteria and modeling of biogeochemical cycling in the Archean oceans. Our experiments reveal that, in the presence of silica, photoferrotroph cell surfaces repel iron (oxyhydr)oxides. In silica-rich Precambrian seawater, this repulsion would separate biomass from ferric iron and would lead to large-scale deposition of BIFs lean in organic matter. Excess biomass not deposited with BIF would have deposited in coastal sediments, formed organic-rich shales, and fueled microbial methanogenesis. As a result, the deposition of BIFs by photoferrotrophs would have contributed fluxes of methane to the atmosphere and thus helped to stabilize Earth's climate under a dim early Sun.

3.
Environ Microbiol Rep ; 10(6): 686-694, 2018 12.
Article in English | MEDLINE | ID: mdl-30230256

ABSTRACT

We developed an efficient, scalable and inexpensive method for recovering cellular biomass from complex fluid matrices that cannot be processed using conventional filtration methods. The method uses chemical flocculation with iron oxyhydroxides, is capable of recovering greater than 90% of cellular biomass from fluids with more than 103 cells ml-1 , and was validated using both mock communities and field samples. High quality DNA can be readily extracted from iron flocs using standard soil extraction kits. We applied chemical flocculation to fracing fluids from British Columbia, Canada and recovered a diversity of microbial taxa including abundant members of the Epsilon- and Deltaproteobacteria previously recovered from shale gas operations in the United States. Application of chemical flocculation presents new opportunities for scalable time-series monitoring and experimentation on complex fluid matrices including microbial community profiling and shotgun metagenomics over gas production well completion cycles.


Subject(s)
Biomass , DNA, Bacterial/isolation & purification , Microbiological Techniques/methods , Water Microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , DNA, Bacterial/genetics , Ferric Compounds/chemistry , Flocculation , Metagenomics , Natural Gas/microbiology , RNA, Ribosomal, 16S/genetics , Reproducibility of Results , Wastewater/microbiology
4.
Proc Natl Acad Sci U S A ; 110(36): 14540-5, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23964124

ABSTRACT

Although the mineral dolomite is abundant in ancient low-temperature sedimentary systems, it is scarce in modern systems below 50 °C. Chemical mechanism(s) enhancing its formation remain an enigma because abiotic dolomite has been challenging to synthesize at low temperature in laboratory settings. Microbial enhancement of dolomite precipitation at low temperature has been reported; however, it is still unclear exactly how microorganisms influence reaction kinetics. Here we document the abiotic synthesis of low-temperature dolomite in laboratory experiments and constrain possible mechanisms for dolomite formation. Ancient and modern seawater solution compositions, with identical pH and pCO2, were used to precipitate an ordered, stoichiometric dolomite phase at 30 °C in as few as 20 d. Mg-rich phases nucleate exclusively on carboxylated polystyrene spheres along with calcite, whereas aragonite forms in solution via homogeneous nucleation. We infer that Mg ions are complexed and dewatered by surface-bound carboxyl groups, thus decreasing the energy required for carbonation. These results indicate that natural surfaces, including organic matter and microbial biomass, possessing a high density of carboxyl groups may be a mechanism by which ordered dolomite nuclei form. Although environments rich in organic matter may be of interest, our data suggest that sharp biogeochemical interfaces that promote microbial death, as well as those with high salinity may, in part, control carboxyl-group density on organic carbon surfaces, consistent with origin of dolomites from microbial biofilms, as well as hypersaline and mixing zone environments.


Subject(s)
Calcium Carbonate/chemistry , Environmental Microbiology , Magnesium/chemistry , Temperature , Bacteria/growth & development , Bacteria/metabolism , Bioreactors/microbiology , Calcium Carbonate/metabolism , Carbon Dioxide/metabolism , Chemical Precipitation , Hydrogen-Ion Concentration , Magnesium/metabolism , Microscopy, Electron, Scanning , Models, Chemical , Salinity , Seawater/microbiology , Spectrometry, X-Ray Emission , Surface Properties , X-Ray Diffraction
5.
Environ Sci Technol ; 40(12): 3782-6, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16830542

ABSTRACT

In this study, batch sorption experiments and X-ray adsorption spectroscopy (XAS) were utilized to investigate selenate sorption onto Shewanella putrefaciens 200R. Selenate sorption was studied as a function of pH (ranging from 3 to 7), ionic strength (ranging from 0.1 to 0.001 M), and initial selenate concentration (ranging from 10 to 5000 microM) in the absence of external electron donors. The results show that the extent of selenate sorption is strongly dependent on pH and ionic strength, with maximum sorption occurring at low pH (pH = 3) and low ionic strength (0.001 M NaCl) conditions. The strong dependence of Se sorption with ionic strength suggests the formation of outersphere complexes with the cell wall functional groups. Langmuir isotherm plots yielded log Kads values from 2.74 to 3.02. Desorption experiments demonstrated thatthe binding of selenate onto S. putrefaciens was not completely reversible. XANES analysis of the cells after sorption experiments revealed the presence of elemental selenium, indicating that S. putrefaciens has a capacity to reduce Se(VI) to Se(0) in the absence of external electron donors. We conclude that Se sorption onto S. putrefaciens cell walls is the result of the combination of outer-sphere complexation and cell surface reduction. This sorption process leads to a complex reservoir of bound Se which is not entirely reversible.


Subject(s)
Selenium Compounds/chemistry , Selenium Compounds/metabolism , Shewanella putrefaciens/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Biodegradation, Environmental , Cell Wall/chemistry , Culture Media , Hydrogen-Ion Concentration , Oxidation-Reduction , Selenic Acid , Shewanella putrefaciens/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...