Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Elife ; 122024 May 09.
Article En | MEDLINE | ID: mdl-38722146

Imputing data is a critical issue for machine learning practitioners, including in the life sciences domain, where missing clinical data is a typical situation and the reliability of the imputation is of great importance. Currently, there is no canonical approach for imputation of clinical data and widely used algorithms introduce variance in the downstream classification. Here we propose novel imputation methods based on determinantal point processes (DPP) that enhance popular techniques such as the multivariate imputation by chained equations and MissForest. Their advantages are twofold: improving the quality of the imputed data demonstrated by increased accuracy of the downstream classification and providing deterministic and reliable imputations that remove the variance from the classification results. We experimentally demonstrate the advantages of our methods by performing extensive imputations on synthetic and real clinical data. We also perform quantum hardware experiments by applying the quantum circuits for DPP sampling since such quantum algorithms provide a computational advantage with respect to classical ones. We demonstrate competitive results with up to 10 qubits for small-scale imputation tasks on a state-of-the-art IBM quantum processor. Our classical and quantum methods improve the effectiveness and robustness of clinical data prediction modeling by providing better and more reliable data imputations. These improvements can add significant value in settings demanding high precision, such as in pharmaceutical drug trials where our approach can provide higher confidence in the predictions made.


Algorithms , Machine Learning , Humans , Data Interpretation, Statistical , Reproducibility of Results
2.
Nat Commun ; 14(1): 1855, 2023 Apr 03.
Article En | MEDLINE | ID: mdl-37012243

As in modern communication networks, the security of quantum networks will rely on complex cryptographic tasks that are based on a handful of fundamental primitives. Weak coin flipping (WCF) is a significant such primitive which allows two mistrustful parties to agree on a random bit while they favor opposite outcomes. Remarkably, perfect information-theoretic security can be achieved in principle for quantum WCF. Here, we overcome conceptual and practical issues that have prevented the experimental demonstration of this primitive to date, and demonstrate how quantum resources can provide cheat sensitivity, whereby each party can detect a cheating opponent, and an honest party is never sanctioned. Such a property is not known to be classically achievable with information-theoretic security. Our experiment implements a refined, loss-tolerant version of a recently proposed theoretical protocol and exploits heralded single photons generated by spontaneous parametric down conversion, a carefully optimized linear optical interferometer including beam splitters with variable reflectivities and a fast optical switch for the verification step. High values of our protocol benchmarks are maintained for attenuation corresponding to several kilometers of telecom optical fiber.

3.
Nat Commun ; 12(1): 850, 2021 Feb 08.
Article En | MEDLINE | ID: mdl-33558480

In recent years, many computational tasks have been proposed as candidates for showing a quantum computational advantage, that is an advantage in the time needed to perform the task using a quantum instead of a classical machine. Nevertheless, practical demonstrations of such an advantage remain particularly challenging because of the difficulty in bringing together all necessary theoretical and experimental ingredients. Here, we show an experimental demonstration of a quantum computational advantage in a prover-verifier interactive setting, where the computational task consists in the verification of an NP-complete problem by a verifier who only gets limited information about the proof sent by an untrusted prover in the form of a series of unentangled quantum states. We provide a simple linear optical implementation that can perform this verification task efficiently (within a few seconds), while we also provide strong evidence that, fixing the size of the proof, a classical computer would take much longer time (assuming only that it takes exponential time to solve an NP-complete problem). While our computational advantage concerns a specific task in a scenario of mostly theoretical interest, it brings us a step closer to potential useful applications, such as server-client quantum computing.

4.
Nat Commun ; 10(1): 4152, 2019 Sep 12.
Article En | MEDLINE | ID: mdl-31515513

Demonstrating a quantum advantage with currently available experimental systems is of utmost importance in quantum information science. While this remains elusive for quantum computation, the field of communication complexity offers the possibility to already explore and showcase this advantage for useful tasks. Here, we define such a task, the Sampling Matching problem, which is inspired by the Hidden Matching problem and features an exponential gap between quantum and classical protocols in the one-way communication model. Our problem allows by its conception a photonic implementation based on encoding in the phase of coherent states of light, the use of a fixed size linear optic circuit, and single-photon detection. This enables us to demonstrate in a proof-of-principle experiment an advantage in the transmitted information resource over the best known classical protocol, something impossible to reach for the original Hidden Matching problem. Our demonstration has implications in quantum verification and cryptographic settings.

5.
Phys Rev Lett ; 122(24): 240501, 2019 Jun 21.
Article En | MEDLINE | ID: mdl-31322405

Quantum communication networks have the potential to revolutionize information and communication technologies. Here we are interested in a fundamental property and formidable challenge for any communication network, that of guaranteeing the anonymity of a sender and a receiver when a message is transmitted through the network, even in the presence of malicious parties. We provide the first practical protocol for anonymous communication in realistic quantum networks.

6.
Phys Rev Lett ; 114(2): 020401, 2015 Jan 16.
Article En | MEDLINE | ID: mdl-25635538

Nonlocality enables two parties to win specific games with probabilities strictly higher than allowed by any classical theory. Nevertheless, all known such examples consider games where the two parties have a common interest, since they jointly win or lose the game. The main question we ask here is whether the nonlocal feature of quantum mechanics can offer an advantage in a scenario where the two parties have conflicting interests. We answer this in the affirmative by presenting a simple conflicting interest game, where quantum strategies outperform classical ones. Moreover, we show that our game has a fair quantum equilibrium with higher payoffs for both players than in any fair classical equilibrium. Finally, we play the game using a commercial entangled photon source and demonstrate experimentally the quantum advantage.

7.
Nat Commun ; 5: 3717, 2014 Apr 24.
Article En | MEDLINE | ID: mdl-24758868

Performing complex cryptographic tasks will be an essential element in future quantum communication networks. These tasks are based on a handful of fundamental primitives, such as coin flipping, where two distrustful parties wish to agree on a randomly generated bit. Although it is known that quantum versions of these primitives can offer information-theoretic security advantages with respect to classical protocols, a demonstration of such an advantage in a practical communication scenario has remained elusive. Here we experimentally implement a quantum coin flipping protocol that performs strictly better than classically possible over a distance suitable for communication over metropolitan area optical networks. The implementation is based on a practical plug and play system, developed by significantly enhancing a commercial quantum key distribution device. Moreover, we provide combined quantum coin flipping protocols that are almost perfectly secure against bounded adversaries. Our results offer a useful toolbox for future secure quantum communications.

8.
Phys Rev Lett ; 108(26): 260502, 2012 Jun 29.
Article En | MEDLINE | ID: mdl-23004945

Future quantum information networks will consist of quantum and classical agents, who have the ability to communicate in a variety of ways with trusted and untrusted parties and securely delegate computational tasks to untrusted large-scale quantum computing servers. Multipartite quantum entanglement is a fundamental resource for such a network and, hence, it is imperative to study the possibility of verifying a multipartite entanglement source in a way that is efficient and provides strong guarantees even in the presence of multiple dishonest parties. In this Letter, we show how an agent of a quantum network can perform a distributed verification of a source creating multipartite Greenberger-Horne-Zeilinger (GHZ) states with minimal resources, which is, nevertheless, resistant against any number of dishonest parties. Moreover, we provide a tight tradeoff between the level of security and the distance between the state produced by the source and the ideal GHZ state. Last, by adding the resource of a trusted common random source, we can further provide security guarantees for all honest parties in the quantum network simultaneously.

...