Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(1): 103539, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-34977503

ABSTRACT

Ischemic stroke is the second leading cause of death worldwide. Following an ischemic event, neuronal death is triggered by uncontrolled glutamate release leading to overactivation of glutamate sensitive N-methyl-d-aspartate receptor (NMDAR). For gating, NMDARs require not only the binding of glutamate, but also of glycine or a glycine-like compound as a co-agonist. Low glycine doses enhance NMDAR function, whereas high doses trigger glycine-induced NMDAR internalization (GINI) in vitro. Here, we report that following an ischemic event, in vivo, GINI also occurs and provides neuroprotection in the presence of a GlyT1 antagonist (GlyT1-A). Mice pretreated with a GlyT1-A, which increases synaptic glycine levels, exhibited smaller stroke volume, reduced cell death, and minimized behavioral deficits following stroke induction by either photothrombosis or endothelin-1. Moreover, we show evidence that in ischemic conditions, GlyT1-As preserve the vasculature in the peri-infarct area. Therefore, GlyT1 could be a new target for the treatment of ischemic stroke.

2.
Neurobiol Dis ; 82: 580-592, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26303888

ABSTRACT

Ischemic strokes cause excessive release of glutamate, leading to overactivation of N-methyl-d-aspartate receptors (NMDARs) and excitotoxicity-induced neuronal death. For this reason, inhibition of NMDARs has been a central focus in identifying mechanisms to avert this extensive neuronal damage. N-acetyl-aspartyl-glutamate (NAAG), the most abundant neuropeptide in the brain, is neuroprotective in ischemic conditions in vivo. Despite this evidence, the exact mechanism underlying its neuroprotection, and more specifically its effect on NMDARs, is currently unknown due to conflicting results in the literature. Here, we uncover a pH-dependent subunit-specific action of NAAG on NMDARs. Using whole-cell electrophysiological recordings on acute hippocampal slices from adult mice and on HEK293 cells, we found that NAAG increases synaptic GluN2A-containing NMDAR EPSCs, while effectively decreasing extrasynaptic GluN2B-containing NMDAR EPSCs in physiological pH. Intriguingly, the results of our study further show that in low pH, which is a physiological occurrence during ischemia, NAAG depresses GluN2A-containing NMDAR EPSCs and amplifies its inhibitory effect on GluN2B-containing NMDAR EPSCs, as well as upregulates the surface expression of the GluN2A subunit. Altogether, our data demonstrate that NAAG has differential effects on NMDAR function based on subunit composition and pH. These findings suggest that the role of NAAG as a neuroprotective agent during an ischemic stroke is likely mediated by its ability to reduce NMDAR excitation. The inhibitory effect of NAAG on NMDARs and its enhanced function in acidic conditions make NAAG a prime therapeutic agent for the treatment of ischemic events.


Subject(s)
CA1 Region, Hippocampal/physiology , Dipeptides/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Synapses/physiology , Animals , CA1 Region, Hippocampal/drug effects , Dipeptides/administration & dosage , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , HEK293 Cells , Humans , Hydrogen-Ion Concentration , Mice , Patch-Clamp Techniques , Protons , Synapses/drug effects , Tissue Culture Techniques
3.
Nat Commun ; 5: 3550, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24686499

ABSTRACT

Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells.


Subject(s)
Acidosis/metabolism , Acidosis/physiopathology , Mitochondria/metabolism , Oxygen/metabolism , Acidosis/genetics , Adenosine Triphosphate/metabolism , Animals , Cell Line, Tumor , Cell Survival , Female , Humans , Male , Metabolic Networks and Pathways , Mice , Mitosis , Oxidative Phosphorylation
4.
Synapse ; 65(11): 1181-95, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21633974

ABSTRACT

Glycine serves a dual role in neurotransmission. It is the primary inhibitory neurotransmitter in the spinal cord and brain stem and is also an obligatory coagonist at the excitatory glutamate, N-methyl-D-aspartate receptor (NMDAR). Therefore, the postsynaptic action of glycine should be strongly regulated to maintain a balance between its inhibitory and excitatory inputs. The glycine concentration at the synapse is tightly regulated by two types of glycine transporters, GlyT1 and GlyT2, located on nerve terminals or astrocytes. Genetic studies demonstrated that homozygous (GlyT1-/-) newborn mice display severe sensorimotor deficits characterized by lethargy, hypotonia, and hyporesponsivity to tactile stimuli and ultimately die in their first postnatal day. These symptoms are similar to those associated with the human disease glycine encephalopathy in which there is a high level of glycine in cerebrospinal fluid of affected individuals. The purpose of this investigation is to determine the impact of chronically high concentrations of endogenous glycine on glutamatergic neurotransmission during postnatal development using an in vivo mouse model (GlyT1+/-). The results of our study indicate the following; that compared with wild-type mice, CA1 pyramidal neurons from mutants display significant disruptions in hippocampal glutamatergic neurotransmission, as suggested by a faster kinetic of NMDAR excitatory postsynaptic currents, a lower reduction of the amplitude of NMDAR excitatory postsynaptic currents by ifenprodil, no difference in protein expression for NR2A and NR2B but a higher protein expression for PSD-95, an increase in their number of synapses and finally, enhanced neuronal excitability.


Subject(s)
CA1 Region, Hippocampal/metabolism , Glutamic Acid/metabolism , Glycine Plasma Membrane Transport Proteins/physiology , Glycine/metabolism , Neural Inhibition/physiology , Synapses/metabolism , Synaptic Transmission/physiology , Age Factors , Animals , Animals, Newborn , CA1 Region, Hippocampal/physiology , Glutamic Acid/physiology , Glycine/physiology , Glycine Plasma Membrane Transport Proteins/pharmacology , Mice , Mice, 129 Strain , Mice, Knockout , Mice, Transgenic , Neural Inhibition/drug effects , Synapses/physiology , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...