Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Saudi J Biol Sci ; 30(2): 103521, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36561331

ABSTRACT

The present study aimed to record seasonal dynamics and diversity of different insect pests in cotton agroecosystems. Two well-known cotton growing districts i.e. district Layyah and Vehari were selected for the study from the cotton belt of Punjab, Pakistan. Sampling was done bi-weekly for two consecutive years from July to October during 2018 and 2019. Sweep netting, visual counting, hand picking, wet finger method, beat sheets, aspirator and pitfall trapping methods were used for collection. Shannon-Wiener and Simpson indices were used to compute diversity while Menhinick and Margalef indices were used for the estimation of species richness. A total of 94,343 individuals representing 43 species, 40 genera, 28 families and 6 orders were recorded. Family Aleyrodidae dominated over other pest families. Bemisia tabaci (Gennadius, 1889) of family Aleyrodidae was the dominant species with 39.68% share among all pest species. Estimated species richness of all arthropod pest species belonging to both districts were about 94%. The densities of pests fluctuated with time. The peaks of sucking pest densities were observed in July and August while densities of chewing pests peaked in late September or early October each year. Population densities of jassids Amrasca biguttula (Ishida), armyworm Spodoptera litura (Fabricius), and pink bollworm Pectinophora gossypiella (Saunders), showed strong negative correlation with temperature, humidity and rainfall while thrips population density showed positive correlation with these parameters. Minor loss due to pests are acceptable everywhere, but it is only possible when their populations remain below their economic threshold levels. Present study will aid to design pest management strategies in cotton growing areas round the globe.

2.
PeerJ ; 10: e13267, 2022.
Article in English | MEDLINE | ID: mdl-35497186

ABSTRACT

Although Pakistan has rich biodiversity, many groups are poorly known, particularly insects. To address this gap, we employed DNA barcoding to survey its insect diversity. Specimens obtained through diverse collecting methods at 1,858 sites across Pakistan from 2010-2019 were examined for sequence variation in the 658 bp barcode region of the cytochrome c oxidase 1 (COI) gene. Sequences from nearly 49,000 specimens were assigned to 6,590 Barcode Index Numbers (BINs), a proxy for species, and most (88%) also possessed a representative image on the Barcode of Life Data System (BOLD). By coupling morphological inspections with barcode matches on BOLD, every BIN was assigned to an order (19) and most (99.8%) were placed to a family (362). However, just 40% of the BINs were assigned to a genus (1,375) and 21% to a species (1,364). Five orders (Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera) accounted for 92% of the specimens and BINs. More than half of the BINs (59%) are so far only known from Pakistan, but others have also been reported from Bangladesh (13%), India (12%), and China (8%). Representing the first DNA barcode survey of the insect fauna in any South Asian country, this study provides the foundation for a complete inventory of the insect fauna in Pakistan while also contributing to the global DNA barcode reference library.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Insecta , Animals , DNA , DNA Barcoding, Taxonomic/methods , Insecta/genetics , Pakistan
3.
PLoS One ; 14(5): e0217086, 2019.
Article in English | MEDLINE | ID: mdl-31116764

ABSTRACT

Morphological study of 1,795 spiders from sites across Pakistan placed these specimens in 27 families and 202 putative species. COI sequences >400 bp recovered from 1,782 specimens were analyzed using neighbor-joining trees, Bayesian inference, barcode gap, and Barcode Index Numbers (BINs). Specimens of 109 morphological species were assigned to 123 BINs with ten species showing BIN splits, while 93 interim species included representatives of 98 BINs. Maximum conspecific divergences ranged from 0-5.3% while congeneric distances varied from 2.8-23.2%. Excepting one species pair (Oxyopes azhari-Oxyopes oryzae), the maximum intraspecific distance was always less than the nearest-neighbor (NN) distance. Intraspecific divergence values were not significantly correlated with geographic distance. Most (75%) BINs detected in this study were new to science, while those shared with other nations mainly derived from India. The discovery of many new, potentially endemic species and the low level of BIN overlap with other nations highlight the importance of constructing regional DNA barcode reference libraries.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA Barcoding, Taxonomic/standards , Gene Library , Spiders/classification , Spiders/genetics , Animals , Bayes Theorem , Pakistan , Phylogeny , Reference Standards
4.
PLoS One ; 13(7): e0199965, 2018.
Article in English | MEDLINE | ID: mdl-29985924

ABSTRACT

Although insects dominate the terrestrial fauna, sampling constraints and the poor taxonomic knowledge of many groups have limited assessments of their diversity. Passive sampling techniques and DNA-based species assignments now make it possible to overcome these barriers. For example, Malaise traps collect specimens with minimal intervention while the Barcode Index Number (BIN) system automates taxonomic assignments. The present study employs Malaise traps and DNA barcoding to extend understanding of insect diversity in one of the least known zoogeographic regions, the Saharo-Arabian. Insects were collected at four sites in three countries (Egypt, Pakistan, Saudi Arabia) by deploying Malaise traps. The collected specimens were analyzed by sequencing 658 bp of cytochrome oxidase I (DNA barcode) and assigning BINs on the Barcode of Life Data Systems. The year-long deployment of a Malaise trap in Pakistan and briefer placements at two Egyptian sites and at one in Saudi Arabia collected 53,092 specimens. They belonged to 17 insect orders with Diptera and Hymenoptera dominating the catch. Barcode sequences were recovered from 44,432 (84%) of the specimens, revealing the occurrence of 3,682 BINs belonging to 254 families. Many of these taxa were uncommon as 25% of the families and 50% of the BINs from Pakistan were only present in one sample. Family and BIN counts varied significantly through the year, but diversity indices did not. Although more than 10,000 specimens were analyzed from each nation, just 2% of BINs were shared by Pakistan and Saudi Arabia, 4% by Egypt and Pakistan, and 7% by Egypt and Saudi Arabia. The present study demonstrates how the BIN system can circumvent the barriers imposed by limited access to taxonomic specialists and by the fact that many insect species in the Saharo-Arabian region are undescribed.


Subject(s)
Biodiversity , DNA Barcoding, Taxonomic , Insecta/classification , Animals , Egypt , Insecta/genetics , Pakistan , Saudi Arabia
5.
Insect Sci ; 25(5): 778-786, 2018 Oct.
Article in English | MEDLINE | ID: mdl-28316131

ABSTRACT

RNA interference (RNAi) of vital insect genes is a potential tool for targeted pest control. However, selection of the right target genes is a challenge because the RNAi efficacy is known to vary among insect species. Cotton mealybug, Phenacoccus solenopsis, is a phloem-feeding economically important crop pest. We evaluated the RNAi of 2 vital genes, Bursicon (PsBur) and V-ATPase (PsV-ATPase) as potential targets in P. solenopsis for its control. PCR fragments of PsBur and PsV-ATPase were amplified using cDNA synthesized from the total RNA. The PCR amplicons were cloned into Potato virus X (PVX) to develop recombinant PVX for the inoculation of Nicotiana tabacum plants for bioassays with healthy P. solenopsis. Reverse-transcription-polymerase chain reaction (RT-PCR) was used to validate the expression of transgenes in the recombinant-PVX-inoculated plants (treated), and suppression of the target genes in the mealybugs exposed to them. The RT-PCR confirmed the expression of transgenes in the treated plants. Mealybug individuals on treated plants either died or showed physical deformities. Further, the population of mealybug was significantly reduced by feeding on N. tabacum expressing RNAi triggers against PsBur and PsV-ATPase. The results conclude that RNAi is activated in P. solenopsis by feeding on N. tabacum expressing RNAi triggering elements of PsBur and PsV-ATPase genes through recombinant PVX vector. Further, V-ATPase and Bursicon genes are potential targets for RNAi-mediated control of P. solenopsis.


Subject(s)
Genes, Insect/genetics , Hemiptera/growth & development , Hemiptera/genetics , Pest Control, Biological/methods , RNA Interference , Animals , Female , Insect Control/methods , Male , Microorganisms, Genetically-Modified/genetics , Nymph/genetics , Nymph/growth & development , Plants, Genetically Modified/genetics , Potexvirus/genetics , RNA, Double-Stranded/genetics , Reverse Transcriptase Polymerase Chain Reaction , Nicotiana/genetics
6.
Insect Sci ; 21(6): 717-26, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25205398

ABSTRACT

The Asian citrus psyllid (ACP) Diaphorina citri Kuwayama vectors pathogens that cause huanglongbing (HLB) or citrus greening devastating and economically important disease present in most citrus growing regions. Young citrus shoots are required for psyllid reproduction and development. During winter citrus trees produce little or no new growth. Overwintering adults reproduce in spring on newly emerging shoots also attractive to other pests and beneficial insects. Botanicals and relatively selective insecticides could help to conserve beneficial insects and reduce pest resistance to insecticides. Sprays of Azadirachtin (Neem), Tropane (Datura), Spirotetramat, Spinetoram, and broad-spectrum Imidacloprid were evaluated to control ACP in spring and summer on 10-year-old "Kinow" Citrus reticulata Blanco trees producing new growth. Psyllid populations were high averaging 5-9 nymphs or adults per sample before treatment application. Nymphs or adults were significantly reduced to 0.5-1.5 per sample in all treatments for 3 weeks, average 61%-83% reduction. No significant reduction in ladybeetles Adalia bipunctata, Aneglei scardoni, Cheilomenes sexmaculata, and Coccinella septempunctata was observed. Syrphids, spiders and green lacewings were reduced in treated trees except with Tropane. Studies are warranted to assess impact of these predators on ACP and interaction with insecticides. Observed reduction in ACP populations may not be enough considering its reproductive potential and role in the spread of HLB. Follow-up sprays may be required to achieve additional suppression using rotations of different insecticides.


Subject(s)
Citrus/parasitology , Hemiptera/drug effects , Insect Control/methods , Insecticides/pharmacology , Animals , Aza Compounds/adverse effects , Aza Compounds/pharmacology , Glycerides/adverse effects , Glycerides/pharmacology , Imidazoles/adverse effects , Imidazoles/pharmacology , Insecta/drug effects , Insecticides/adverse effects , Macrolides/adverse effects , Macrolides/pharmacology , Neonicotinoids , Nitro Compounds/adverse effects , Nitro Compounds/pharmacology , Nymph/drug effects , Pakistan , Predatory Behavior/drug effects , Spiders/drug effects , Spiro Compounds/adverse effects , Spiro Compounds/pharmacology , Terpenes/adverse effects , Terpenes/pharmacology
7.
PLoS One ; 9(8): e104485, 2014.
Article in English | MEDLINE | ID: mdl-25099936

ABSTRACT

BACKGROUND: Although whiteflies (Bemisia tabaci complex) are an important pest of cotton in Pakistan, its taxonomic diversity is poorly understood. As DNA barcoding is an effective tool for resolving species complexes and analyzing species distributions, we used this approach to analyze genetic diversity in the B. tabaci complex and map the distribution of B. tabaci lineages in cotton growing areas of Pakistan. METHODS/PRINCIPAL FINDINGS: Sequence diversity in the DNA barcode region (mtCOI-5') was examined in 593 whiteflies from Pakistan to determine the number of whitefly species and their distributions in the cotton-growing areas of Punjab and Sindh provinces. These new records were integrated with another 173 barcode sequences for B. tabaci, most from India, to better understand regional whitefly diversity. The Barcode Index Number (BIN) System assigned the 766 sequences to 15 BINs, including nine from Pakistan. Representative specimens of each Pakistan BIN were analyzed for mtCOI-3' to allow their assignment to one of the putative species in the B. tabaci complex recognized on the basis of sequence variation in this gene region. This analysis revealed the presence of Asia II 1, Middle East-Asia Minor 1, Asia 1, Asia II 5, Asia II 7, and a new lineage "Pakistan". The first two taxa were found in both Punjab and Sindh, but Asia 1 was only detected in Sindh, while Asia II 5, Asia II 7 and "Pakistan" were only present in Punjab. The haplotype networks showed that most haplotypes of Asia II 1, a species implicated in transmission of the cotton leaf curl virus, occurred in both India and Pakistan. CONCLUSIONS: DNA barcodes successfully discriminated cryptic species in B. tabaci complex. The dominant haplotypes in the B. tabaci complex were shared by India and Pakistan. Asia II 1 was previously restricted to Punjab, but is now the dominant lineage in southern Sindh; its southward spread may have serious implications for cotton plantations in this region.


Subject(s)
DNA Barcoding, Taxonomic , Gossypium/parasitology , Hemiptera/genetics , Phylogeny , Animals , Pakistan
8.
PLoS One ; 9(5): e97268, 2014.
Article in English | MEDLINE | ID: mdl-24827460

ABSTRACT

BACKGROUND: Although they are important disease vectors mosquito biodiversity in Pakistan is poorly known. Recent epidemics of dengue fever have revealed the need for more detailed understanding of the diversity and distributions of mosquito species in this region. DNA barcoding improves the accuracy of mosquito inventories because morphological differences between many species are subtle, leading to misidentifications. METHODOLOGY/PRINCIPAL FINDINGS: Sequence variation in the barcode region of the mitochondrial COI gene was used to identify mosquito species, reveal genetic diversity, and map the distribution of the dengue-vector species in Pakistan. Analysis of 1684 mosquitoes from 491 sites in Punjab and Khyber Pakhtunkhwa during 2010-2013 revealed 32 species with the assemblage dominated by Culex quinquefasciatus (61% of the collection). The genus Aedes (Stegomyia) comprised 15% of the specimens, and was represented by six taxa with the two dengue vector species, Ae. albopictus and Ae. aegypti, dominant and broadly distributed. Anopheles made up another 6% of the catch with An. subpictus dominating. Barcode sequence divergence in conspecific specimens ranged from 0-2.4%, while congeneric species showed from 2.3-17.8% divergence. A global haplotype analysis of disease-vectors showed the presence of multiple haplotypes, although a single haplotype of each dengue-vector species was dominant in most countries. Geographic distribution of Ae. aegypti and Ae. albopictus showed the later species was dominant and found in both rural and urban environments. CONCLUSIONS: As the first DNA-based analysis of mosquitoes in Pakistan, this study has begun the construction of a barcode reference library for the mosquitoes of this region. Levels of genetic diversity varied among species. Because of its capacity to differentiate species, even those with subtle morphological differences, DNA barcoding aids accurate tracking of vector populations.


Subject(s)
Culicidae/genetics , Genetic Variation/genetics , Animals , Biodiversity , DNA Barcoding, Taxonomic/methods , DNA, Mitochondrial/genetics , Dengue/genetics , Disease Vectors , Haplotypes/genetics , Insect Vectors/genetics , Pakistan , Phylogeography/methods
9.
Mol Ecol Resour ; 13(5): 832-43, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23789612

ABSTRACT

DNA barcodes were obtained for 81 butterfly species belonging to 52 genera from sites in north-central Pakistan to test the utility of barcoding for their identification and to gain a better understanding of regional barcode variation. These species represent 25% of the butterfly fauna of Pakistan and belong to five families, although the Nymphalidae were dominant, comprising 38% of the total specimens. Barcode analysis showed that maximum conspecific divergence was 1.6%, while there was 1.7-14.3% divergence from the nearest neighbour species. Barcode records for 55 species showed <2% sequence divergence to records in the Barcode of Life Data Systems (BOLD), but only 26 of these cases involved specimens from neighbouring India and Central Asia. Analysis revealed that most species showed little incremental sequence variation when specimens from other regions were considered, but a threefold increase was noted in a few cases. There was a clear gap between maximum intraspecific and minimum nearest neighbour distance for all 81 species. Neighbour-joining cluster analysis showed that members of each species formed a monophyletic cluster with strong bootstrap support. The barcode results revealed two provisional species that could not be clearly linked to known taxa, while 24 other species gained their first coverage. Future work should extend the barcode reference library to include all butterfly species from Pakistan as well as neighbouring countries to gain a better understanding of regional variation in barcode sequences in this topographically and climatically complex region.


Subject(s)
Butterflies/classification , Butterflies/genetics , DNA Barcoding, Taxonomic , Entomology/methods , Phylogeography , Animals , Cluster Analysis , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Molecular Sequence Data , Pakistan , Sequence Analysis, DNA
10.
J Opt Soc Am A Opt Image Sci Vis ; 19(11): 2203-17, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12413121

ABSTRACT

In color halftoning, moiré is the low-frequency spatial artifact generated by the interference of superimposed primary color dot screens that adds an unwanted artificial texture to the printed image. When these overlapping dot screens are irregular, as in the case of stochastic dot screens, this interference pattern follows a random spatial distribution resulting in 'stochastic" moiré. This stochastic moiré is at its most visible when the overlapping dither patterns have the same relative spacing between dots. We study the occurrence of stochastic moiré in green-noise halftones where dither patterns are composed of clusters of varying sizes and where the visibility of stochastic moiré6 can be reduced by varying the coarseness of dither patterns between the component cyan, magenta, yellow, and black colors.

SELECTION OF CITATIONS
SEARCH DETAIL
...