Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(26): 16766-16775, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38881465

ABSTRACT

Chirality is omnipresent in the living world. As biomimetic nanotechnology and self-assembly advance, they too need chirality. Accordingly, there is a pressing need to develop general methods to characterize chiral building blocks at the nanoscale in liquids such as water─the medium of life. Here, we demonstrate the chiroptical second-harmonic Tyndall scattering effect. The effect was observed in Si nanohelices, an example of a high-refractive-index dielectric nanomaterial. For three wavelengths of illumination, we observe a clear difference in the second-harmonic scattered light that depends on the chirality of the nanohelices and the handedness of circularly polarized light. Importantly, we provide a theoretical analysis that explains the origin of the effect and its direction dependence, resulting from different specific contributions of "electric dipole-magnetic dipole" and "electric dipole-electric quadrupole" coupling tensors. Using numerical simulations, we narrow down the number of such terms to 8 in forward scattering and to a single one in right-angled scattering. For chiral scatterers such as high-refractive-index dielectric nanoparticles, our findings expand the Tyndall scattering regime to nonlinear optics. Moreover, our theory can be broadened and adapted to further classes where such scattering has already been observed or is yet to be observed.

2.
Anal Biochem ; 693: 115582, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38825160

ABSTRACT

Progress has been made studying cell-cell signaling communication processes. However, due to limitations of current sensors on time and spatial resolution, the role of many extracellular analytes is still unknown. A single walled carbon nanotube (SWNT) platform was previously developed based on the avidin-biotin immobilization of SWNT to a glass substrate. The SWNT platform provides real time feedback about analyte concentration and has a high concentration of evenly distributed sensors, both of which are essential for the study of extracellular analytes. Unfortunately, this initial SWNT platform is synthesized through unsterile conditions and cannot be sterilized post-production due to the delicate nature of the sensors, making it unsuitable for in vitro work. Herein the multiple-step process for SWNT immobilization is modified and the platform's biocompatibility is assessed in terms of sterility, cytotoxicity, cell proliferation, and cell morphology through comparison with non-sensors controls. The results demonstrate the SWNT platform's sterility and lack of toxicity over 72 h. The proliferation rate and morphology profiles for cells growing on the SWNT platform are similar to those grown on tissue culture substrates. This novel nano-sensor platform preserves cell health and cell functionality over time, offering opportunities to study extracellular analytes gradients in cellular communication.


Subject(s)
Nanotubes, Carbon , Nanotubes, Carbon/chemistry , Humans , Cell Proliferation , Biotin/chemistry , Biosensing Techniques/methods , Avidin/chemistry
3.
Nat Commun ; 15(1): 3757, 2024 May 04.
Article in English | MEDLINE | ID: mdl-38704375

ABSTRACT

The inherently weak chiroptical responses of natural materials limit their usage for controlling and enhancing chiral light-matter interactions. Recently, several nanostructures with subwavelength scale dimensions were demonstrated, mainly due to the advent of nanofabrication technologies, as a potential alternative to efficiently enhance chirality. However, the intrinsic lossy nature of metals and the inherent narrowband response of dielectric planar thin films or metasurface structures pose severe limitations toward the practical realization of broadband and tailorable chiral systems. Here, we tackle these problems by designing all-dielectric silicon-based L-shaped optical metamaterials based on tilted nanopillars that exhibit broadband and enhanced chiroptical response in transmission operation. We use an emerging bottom-up fabrication approach, named glancing angle deposition, to assemble these dielectric metamaterials on a wafer scale. The reported strong chirality and optical anisotropic properties are controllable in terms of both amplitude and operating frequency by simply varying the shape and dimensions of the nanopillars. The presented nanostructures can be used in a plethora of emerging nanophotonic applications, such as chiral sensors, polarization filters, and spin-locked nanowaveguides.

SELECTION OF CITATIONS
SEARCH DETAIL