Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(21): 27410-27418, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38738751

ABSTRACT

The development of a stable roll-to-roll (R2R) process for flexible large-area perovskite solar cells (PSCs) and modules is a pressing challenge. In this study, we introduced a new R2R PSC manufacturing system that employs a two-step deposition method for coating perovskite and uses intensive pulsed light (IPL) for annealing. This system has successfully fabricated small-sized cells and the first-ever large-sized, R2R-processed flexible modules. A key focus of our work was to accelerate the conversion of PbI2 to perovskite. To this end, we utilized IPL annealing and incorporated additives into the PbI2 layer. With these modifications, the R2R-processed perovskite films achieved a power conversion efficiency (PCE) of 16.87%, representing the highest reported value for R2R two-step processed PSCs. However, these cells exhibited hysteresis in reverse and forward PCE measurements. To address this, we introduced a dual-annealing process consisting of IPL followed by a 2-min thermal heating step. This approach successfully reduced hysteresis, resulting in low-hysteresis, R2R-processed flexible PSCs. Moreover, we fabricated large-scale flexible modules (10 × 10 cm2) with a PCE of 11.25% using the dual-annealing system, marking a significant milestone in this field.

2.
ACS Appl Mater Interfaces ; 15(14): 18144-18152, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36995023

ABSTRACT

Achieving high mobility and bias stability is a challenging obstacle in the advancement of organic thin-film transistors (OTFTs). To this end, the fabrication of high-quality organic semiconductor (OSC) thin films is critical for OTFTs. Self-assembled monolayers (SAMs) have been used as growth templates for high-crystalline OSC thin films. Despite significant research progress in the growth of OSC on SAMs, a detailed understanding of the growth mechanism of the OSC thin films on a SAM template is lacking, which has limited its use. In this study, the effects of the structure (thickness and molecular packing) of SAM on the nucleation and growth behavior of the OSC thin films were investigated. We found that disordered SAM molecules assisted in the surface diffusion of the OSC molecules and resulted in a small nucleation density and large grain size of the OSC thin films. Moreover, a thick SAM with disordered SAM molecules on the top was found to be beneficial for the high mobility and bias stability of the OTFTs.

SELECTION OF CITATIONS
SEARCH DETAIL