Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanoscale Adv ; 3(2): 517-527, 2021 Jan 26.
Article in English | MEDLINE | ID: mdl-36131735

ABSTRACT

The practical application of 2D MXenes in electronic and energy fields has been hindered by the severe variation in the quality of MXene products depending on the parent MAX phases, manufacturing techniques, and preparation parameters. In particular, their synthesis has been impeded by the lack of studies reporting the synthesis of high-quality parent MAX phases. In addition, controllable and uniform deposition of 2D MXenes on various large-scale substrates is urgently required to use them practically. Herein, a method of pelletizing raw materials could synthesize a stoichiometric Ti3AlC2 MAX phase with high yield and processability, and fewer impurities. The Ti3AlC2 could be exfoliated into 1-2-atom-thick 2D Ti3C2T x flakes, and their applicability was confirmed by the deposition and additional alignment of the 2D flakes with tunable thickness and electrical properties. Moreover, a practical MXene ink was fabricated with rheological characterization. MXene ink exhibited much better thickness uniformity while retaining excellent electrical performances (e.g., sheet resistance, electromagnetic interference shielding ability) as those of a film produced by vacuum filtration. The direct functional integration of MXenes on various substrates is expected to initiate new and unexpected MXene-based applications.

2.
Adv Sci (Weinh) ; 7(15): 2000788, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32775161

ABSTRACT

Antiphase boundaries (APBs) in 2D transition metal dichalcogenides have attracted wide interest as 1D metallic wires embedded in a semiconducting matrix, which could be exploited in fully 2D-integrated circuits. Here, the anisotropic morphologies of APBs (i.e., linear and saw-toothed APBs) in the nanoscale are investigated. The experimental and computational results show that despite their anisotropic nanoscale morphologies, all APBs adopt a predominantly chalcogen-oriented dense structure to maintain the energetically most stable atomic configuration. Moreover, the effect of the nanoscale morphology of an APB on electron transport from two-probe field effect transistor measurements is investigated. A saw-toothed APB has a considerably lower electron mobility than a linear APB, indicating that kinks between facets are the main factors of scattering. The observations contribute to the systematical understanding of the faceted APBs and its impact on electrical transport behavior and it could potentially extend the applications of 2D materials through defect engineering to achieve the desired properties.

3.
Adv Sci (Weinh) ; 6(3): 1801370, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30775229

ABSTRACT

As the elements of integrated circuits are downsized to the nanoscale, the current Cu-based interconnects are facing limitations due to increased resistivity and decreased current-carrying capacity because of scaling. Here, the bottom-up synthesis of single-crystalline WTe2 nanobelts and low- and high-field electrical characterization of nanoscale interconnect test structures in various ambient conditions are reported. Unlike exfoliated flakes obtained by the top-down approach, the bottom-up growth mode of WTe2 nanobelts allows systemic characterization of the electrical properties of WTe2 single crystals as a function of channel dimensions. Using a 1D heat transport model and a power law, it is determined that the breakdown of WTe2 devices under vacuum and with AlO x capping layer follows an ideal pattern for Joule heating, far from edge scattering. High-field electrical measurements and self-heating modeling demonstrate that the WTe2 nanobelts have a breakdown current density approaching ≈100 MA cm-2, remarkably higher than those of conventional metals and other transition-metal chalcogenides, and sustain the highest electrical power per channel length (≈16.4 W cm-1) among the interconnect candidates. The results suggest superior robustness of WTe2 against high-bias sweep and its possible applicability in future nanoelectronics.

4.
Adv Mater ; 31(20): e1804939, 2019 May.
Article in English | MEDLINE | ID: mdl-30706541

ABSTRACT

An overview of recent developments in controlled vapor-phase growth of 2D transition metal dichalcogenide (2D TMD) films is presented. Investigations of thin-film formation mechanisms and strategies for realizing 2D TMD films with less-defective large domains are of central importance because single-crystal-like 2D TMDs exhibit the most beneficial electronic and optoelectronic properties. The focus is on the role of the various growth parameters, including strategies for efficiently delivering the precursors, the selection and preparation of the substrate surface as a growth assistant, and the introduction of growth promoters (e.g., organic molecules and alkali metal halides) to facilitate the layered growth of (Mo, W)(S, Se, Te)2 atomic crystals on inert substrates. Critical factors governing the thermodynamic and kinetic factors related to chemical reaction pathways and the growth mechanism are reviewed. With modification of classical nucleation theory, strategies for designing and growing various vertical/lateral TMD-based heterostructures are discussed. Then, several pioneering techniques for facile observation of structural defects in TMDs, which substantially degrade the properties of macroscale TMDs, are introduced. Technical challenges to be overcome and future research directions in the vapor-phase growth of 2D TMDs for heterojunction devices are discussed in light of recent advances in the field.

5.
Adv Mater ; 31(15): e1807486, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30785234

ABSTRACT

Van der Waals (vdW) epitaxy allows the fabrication of various heterostructures with dramatically released lattice matching conditions. This study demonstrates interface-driven stacking boundaries in WS2 using epitaxially grown tungsten disulfide (WS2 ) on wrinkled graphene. Graphene wrinkles function as highly reactive nucleation sites on WS2 epilayers; however, they impede lateral growth and induce additional stress in the epilayer due to anisotropic friction. Moreover, partial dislocation-driven in-plane strain facilitates out-of-plane buckling with a height of 1 nm to release in-plane strain. Remarkably, in-plane strain relaxation at partial dislocations restores the bandgap to that of monolayer WS2 due to reduced interlayer interaction. These findings clarify significant substrate morphology effects even in vdW epitaxy and are potentially useful for various applications involving modifying optical and electronic properties by manipulating extended 1D defects via substrate morphology control.

6.
Nanoscale ; 10(40): 19212-19219, 2018 Oct 18.
Article in English | MEDLINE | ID: mdl-30303224

ABSTRACT

The recent emergence of vertically stacked van der Waals (vdW) heterostructures provides new opportunities for these materials to be employed in a wide range of novel applications. Understanding the interlayer coupling in the stacking geometries of the heterostructures and its effect on the resultant material properties is particularly important for obtaining materials with desirable properties. Here, we report that the atomic bonding between stacked layers and thereby the interlayer properties of the vdW heterostructures can be well tuned by the substrate surface defects using WS2 flakes directly grown on graphene. We show that the defects of graphene have no significant effect on the crystal structure or the quality of the grown WS2 flakes; however, they have a strong influence on the interlayer interactions between stacked layers, thus affecting the layer deformability, thermal stability, and physical and electrical properties. Our experimental and computational investigations also reveal that WS2 flakes grown on graphene defects form covalent bonds with the underlying graphene via W atomic bridges (i.e., formation of larger overlapping hybrid orbitals), enabling these flakes to exhibit different intrinsic properties, such as higher conductivity and improved contact characteristics than heterostructures that have vdW interactions with graphene. This result emphasizes the importance of understanding the interlayer coupling in the stacking geometries and its correlation effect for designing desirable properties.

7.
Adv Mater ; 30(30): e1800022, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29889331

ABSTRACT

Graphene has recently attracted particular interest as a flexible barrier film preventing permeation of gases and moistures. However, it has been proved to be exceptionally challenging to develop large-scale graphene films with little oxygen and moisture permeation suitable for industrial uses, mainly due to the presence of nanometer-sized defects of obscure origins. Here, the origins of water permeable routes on graphene-coated Cu foils are investigated by observing the micrometer-sized rusts in the underlying Cu substrates, and a site-selective passivation method of the nanometer-sized routes is devised. It is revealed that nanometer-sized holes or cracks are primarily concentrated on graphene wrinkles rather than on other structural imperfections, resulting in severe degradation of its water impermeability. They are found to be predominantly induced by the delamination of graphene bound to Cu as a release of thermal stress during the cooling stage after graphene growth, especially at the intersection of the Cu step edges and wrinkles owing to their higher adhesion energy. Furthermore, the investigated routes are site-selectively passivated by an electron-beam-induced amorphous carbon layer, thus a substantial improvement in water impermeability is achieved. This approach is likely to be extended for offering novel barrier properties in flexible films based on graphene and on other atomic crystals.

8.
Adv Mater ; 30(30): e1707260, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29882243

ABSTRACT

Following the celebrated discovery of graphene, considerable attention has been directed toward the rich spectrum of properties offered by van der Waals crystals. However, studies have been largely limited to their 2D properties due to lack of 1D structures. Here, the growth of high-yield, single-crystalline 1D nanobelts composed of transition metal ditellurides at low temperatures (T ≤ 500 °C) and in short reaction times (t ≤ 10 min) via the use of tellurium-rich eutectic metal alloys is reported. The synthesized semimetallic 1D products are highly pure, stoichiometric, structurally uniform, and free of defects, resulting in high electrical performances. Furthermore, complete compositional tuning of the ternary ditelluride nanobelts is achieved with suppressed phase separation, applicable to the creation of unprecedented low-dimensional materials/devices. This approach may inspire new growth/fabrication strategies of 1D layered nanostructures, which may offer unique properties that are not available in other materials.

9.
Nat Commun ; 8(1): 1549, 2017 11 16.
Article in English | MEDLINE | ID: mdl-29147017

ABSTRACT

The development of ultrathin barrier films is vital to the advanced semiconductor industry. Graphene appears to hold promise as a protective coating; however, the polycrystalline and defective nature of engineered graphene hinders its practical applications. Here, we investigate the oxidation behavior of graphene-coated Cu foils at intrinsic graphene defects of different origins. Macro-scale information regarding the spatial distribution and oxidation resistance of various graphene defects is readily obtained using optical and electron microscopies after the hot-plate annealing. The controlled oxidation experiments reveal that the degree of structural deficiency is strongly dependent on the origins of the structural defects, the crystallographic orientations of the underlying Cu grains, the growth conditions of graphene, and the kinetics of the graphene growth. The obtained experimental and theoretical results show that oxygen radicals, decomposed from water molecules in ambient air, are effectively inverted at Stone-Wales defects into the graphene/Cu interface with the assistance of facilitators.

10.
ACS Nano ; 9(1): 679-86, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25494828

ABSTRACT

Growth of large-scale patterned, wrinkle-free graphene and the gentle transfer technique without further damage are most important requirements for the practical use of graphene. Here we report the growth of wrinkle-free, strictly uniform monolayer graphene films by chemical vapor deposition on a platinum (Pt) substrate with texture-controlled giant grains and the thermal-assisted transfer of large-scale patterned graphene onto arbitrary substrates. The designed Pt surfaces with limited numbers of grain boundaries and improved surface perfectness as well as small thermal expansion coefficient difference to graphene provide a venue for uniform growth of monolayer graphene with wrinkle-free characteristic. The thermal-assisted transfer technique allows the complete transfer of large-scale patterned graphene films onto arbitrary substrates without any ripples, tears, or folds. The transferred graphene shows high crystalline quality with an average carrier mobility of ∼ 5500 cm(2) V(-1) s(-1) at room temperature. Furthermore, this transfer technique shows a high tolerance to variations in types and morphologies of underlying substrates.

SELECTION OF CITATIONS
SEARCH DETAIL