Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
bioRxiv ; 2023 May 17.
Article in English | MEDLINE | ID: mdl-36824957

ABSTRACT

The mechanisms underlying immune evasion and immunotherapy resistance in small cell lung cancer (SCLC) remain unclear. Herein, we investigate the role of CRACD tumor suppressor in SCLC. We found that CRACD is frequently inactivated in SCLC, and Cracd knockout (KO) significantly accelerates SCLC development driven by loss of Rb1, Trp53, and Rbl2. Notably, the Cracd-deficient SCLC tumors display CD8+ T cell depletion and suppression of antigen presentation pathway. Mechanistically, CRACD loss silences the MHC-I pathway through EZH2. EZH2 blockade is sufficient to restore the MHC-I pathway and inhibit CRACD loss-associated SCLC tumorigenesis. Unsupervised single-cell transcriptomic analysis identifies SCLC patient tumors with concomitant inactivation of CRACD, impairment of tumor antigen presentation, and downregulation of EZH2 target genes. Our findings define CRACD loss as a new molecular signature associated with immune evasion of SCLC cells and proposed EZH2 blockade as a viable option for CRACD-negative SCLC treatment.

2.
Exp Mol Med ; 54(12): 2118-2127, 2022 12.
Article in English | MEDLINE | ID: mdl-36509828

ABSTRACT

Tumor suppressor genes (TSGs) are often involved in maintaining homeostasis. Loss of tumor suppressor functions causes cellular plasticity that drives numerous types of cancer, including small-cell lung cancer (SCLC), an aggressive type of lung cancer. SCLC is largely driven by numerous loss-of-function mutations in TSGs, often in those encoding chromatin modifiers. These mutations present a therapeutic challenge because they are not directly actionable. Alternatively, understanding the resulting molecular changes may provide insight into tumor intervention strategies. We hypothesize that despite the heterogeneous genomic landscape in SCLC, the impacts of mutations in patient tumors are related to a few important pathways causing malignancy. Specifically, alterations in chromatin modifiers result in transcriptional dysregulation, driving mutant cells toward a highly plastic state that renders them immune evasive and highly metastatic. This review will highlight studies in which imbalance of chromatin modifiers with opposing functions led to loss of immune recognition markers, effectively masking tumor cells from the immune system. This review also discusses the role of chromatin modifiers in maintaining neuroendocrine characteristics and the role of aberrant transcriptional control in promoting epithelial-to-mesenchymal transition during tumor development and progression. While these pathways are thought to be disparate, we highlight that the pathways often share molecular drivers and mediators. Understanding the relationships among frequently altered chromatin modifiers will provide valuable insights into the molecular mechanisms of SCLC development and progression and therefore may reveal preventive and therapeutic vulnerabilities of SCLC and other cancers with similar mutations.


Subject(s)
Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Small Cell Lung Carcinoma/genetics , Lung Neoplasms/metabolism , Mutation , Epithelial-Mesenchymal Transition/genetics , Chromatin/genetics
3.
Cancer Res ; 82(22): 4219-4233, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36102736

ABSTRACT

WNT signaling represents an attractive target for cancer therapy due to its widespread oncogenic role. However, the molecular players involved in WNT signaling and the impact of their perturbation remain unknown for numerous recalcitrant cancers. Here, we characterize WNT pathway activity in small cell lung cancer (SCLC) and determine the functional role of WNT signaling using genetically engineered mouse models. ß-Catenin, a master mediator of canonical WNT signaling, was dispensable for SCLC development, and its transcriptional program was largely silenced during tumor development. Conversely, WNT5A, a ligand for ß-catenin-independent noncanonical WNT pathways, promoted neoplastic transformation and SCLC cell proliferation, whereas WNT5A deficiency inhibited SCLC development. Loss of p130 in SCLC cells induced expression of WNT5A, which selectively increased Rhoa transcription and activated RHOA protein to drive SCLC. Rhoa knockout suppressed SCLC development in vivo, and chemical perturbation of RHOA selectively inhibited SCLC cell proliferation. These findings suggest a novel requirement for the WNT5A-RHOA axis in SCLC, providing critical insights for the development of novel therapeutic strategies for this recalcitrant cancer. This study also sheds light on the heterogeneity of WNT signaling in cancer and the molecular determinants of its cell-type specificity. SIGNIFICANCE: The p130-WNT5A-RHOA pathway drives SCLC progression and is a potential target for the development of therapeutic interventions and biomarkers to improve patient treatment.


Subject(s)
Carcinogenesis , Lung Neoplasms , Small Cell Lung Carcinoma , Wnt-5a Protein , rhoA GTP-Binding Protein , Animals , Mice , beta Catenin/metabolism , Carcinogenesis/genetics , Lung Neoplasms/genetics , rhoA GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/metabolism , Small Cell Lung Carcinoma/genetics , Wnt Signaling Pathway , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism , Molecular Targeted Therapy
4.
Cell Rep ; 30(2): 351-366.e7, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31940481

ABSTRACT

Human rhinoviruses cause the common cold and exacerbate chronic respiratory diseases. Although infection elicits neutralizing antibodies, these do not persist or cross-protect across multiple rhinovirus strains. To analyze rhinovirus-specific B cell responses in humans, we developed techniques using intact RV-A16 and RV-A39 for high-throughput high-dimensional single-cell analysis, with parallel assessment of antibody isotypes in an experimental infection model. Our approach identified T-bet+ B cells binding both viruses that account for ∼5% of CXCR5- memory B cells. These B cells infiltrate nasal tissue and expand in the blood after infection. Their rapid secretion of heterotypic immunoglobulin G (IgG) in vitro, but not IgA, matches the nasal antibody profile post-infection. By contrast, CXCR5+ memory B cells binding a single virus are clonally distinct, absent in nasal tissue, and secrete homotypic IgG and IgA, mirroring the systemic response. Temporal and spatial functions of dichotomous memory B cells might explain the ability to resolve infection while rendering the host susceptible to re-infection.


Subject(s)
B-Lymphocytes/immunology , Cross Reactions/immunology , Immunoglobulin G/immunology , Immunologic Memory/immunology , Rhinovirus/immunology , Humans
6.
Antimicrob Agents Chemother ; 46(8): 2513-7, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12121926

ABSTRACT

We screened 615 gram-positive isolates from 150 healthy children for the presence of the erm(A), erm(B), erm(C), erm(F), and mef(A) genes. The mef(A) genes were found in 20 (9%) of the macrolide-resistant isolates, including Enterococcus spp., Staphylococcus spp., and Streptococcus spp. Sixteen of the 19 gram-positive isolates tested carried the other seven open reading frames (ORFs) described in Tn1207.1, a genetic element carrying mef(A) recently described in Streptococcus pneumoniae. The three Staphylococcus spp. did not carry orf1 to orf3. A gram-negative Acinetobacter junii isolate also carried the other seven ORFs described in Tn1207.1. A Staphylococcus aureus isolate, a Streptococcus intermedius isolate, a Streptococcus sp. isolate, and an Enterococcus sp. isolate had their mef(A) genes completely sequenced and showed 100% identity at the DNA and amino acid levels with the mef(A) gene from S. pneumoniae.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins , Gram-Positive Bacteria/genetics , Membrane Proteins/genetics , Child , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Drug Resistance, Microbial , Genes, Bacterial/genetics , Gram-Positive Bacterial Infections/microbiology , Humans , Macrolides , Molecular Sequence Data , Oligonucleotide Probes , Open Reading Frames/genetics , Phenotype , Portugal , RNA/pharmacology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL