Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Brain Commun ; 6(4): fcae229, 2024.
Article in English | MEDLINE | ID: mdl-39035416

ABSTRACT

Ionic imbalances and sodium channel dysfunction, well-known sequelae of traumatic brain injury (TBI), promote functional impairment in affected subjects. Therefore, non-invasive measurement of sodium concentrations using 23Na MRI has the potential to detect clinically relevant injury and predict persistent symptoms. Recently, we reported diffusely lower apparent total sodium concentrations (aTSC) in mild TBI patients compared to controls, as well as correlations between lower aTSC and worse clinical outcomes. The main goal of this study was to determine whether these aTSC findings, and their changes over time, predict outcomes at 3- and 12-month from injury. Twenty-seven patients previously studied with 23Na MRI and outcome measures at 22 ± 10 days (average ± standard deviation) after injury (visit-1, v1) were contacted at 3- (visit-2, v2) and 12-month after injury (visit-3, v3) to complete the Rivermead post-concussion symptoms questionnaire (RPQ), the extended Glasgow outcome scale (GOSE), and the brief test of adult cognition by telephone (BTACT). Follow-up 1H and 23Na MRI were additionally scheduled at v2. Linear regression was used to calculate aTSC in global grey and white matters. Six hypotheses were tested in relation to the serial changes in outcome measures and in aTSC, and in relation to the cross-sectional and serial relationships between aTSC and outcome. Twenty patients contributed data at v2 and fifteen at v3. Total RPQ and composite BTACT z-scores differed significantly for v2 and v3 in comparison to v1 (each P < 0.01), reflecting longitudinally reduced symptomatology and improved performance on cognitive testing. No associations between aTSC and outcome were observed at v2. Previously lower grey and white matter aTSC normalized at v2 in comparison to controls, in line with a statistically detectable longitudinal increase in grey matter aTSC between v1 and v2 (P = 0.0004). aTSC values at v1 predicted a subset of future BTACT subtest scores, but not future RPQ scores nor GOSE-defined recovery status. Similarly, aTSC rates of change correlated with BTACT rates of change, but not with those of RPQ. Tissue aTSC, previously shown to be diffusely decreased compared to controls at v1, was no longer reduced by v2, suggesting normalization of the sodium ionic equilibrium. These changes were accompanied by marked improvement in outcome. The results support the notion that early aTSC from 23Na MRI predicts future BTACT, but not RPQ scores, nor future GOSE status.

2.
Neuroimage ; 297: 120742, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39029606

ABSTRACT

PURPOSE: The pathological hallmarks of Alzheimer's disease (AD), amyloid, tau, and associated neurodegeneration, are present in the cortical gray matter (GM) years before symptom onset, and at significantly greater levels in carriers of the apolipoprotein E4 (APOE4) allele. Their respective biomarkers, A/T/N, have been found to correlate with aspects of brain biochemistry, measured with magnetic resonance spectroscopy (MRS), indicating a potential for MRS to augment the A/T/N framework for staging and prediction of AD. Unfortunately, the relationships between MRS and A/T/N biomarkers are unclear, largely due to a lack of studies examining them in the context of the spatial and temporal model of T/N progression. Advanced MRS acquisition and post-processing approaches have enabled us to address this knowledge gap and test the hypotheses, that glutamate-plus-glutamine (Glx) and N-acetyl-aspartate (NAA), metabolites reflecting synaptic and neuronal health, respectively, measured from regions on the Braak stage continuum, correlate with: (i) cerebrospinal fluid (CSF) p-tau181 level (T), and (ii) hippocampal volume or cortical thickness of parietal lobe GM (N). We hypothesized that these correlations will be moderated by Braak stage and APOE4 genotype. METHODS: We conducted a retrospective imaging study of 34 cognitively unimpaired elderly individuals who received APOE4 genotyping and lumbar puncture from pre-existing prospective studies at the NYU Grossman School of Medicine between October 2014 and January 2019. Subjects returned for their imaging exam between April 2018 and February 2020. Metabolites were measured from the left hippocampus (Braak II) using a single-voxel semi-adiabatic localization by adiabatic selective refocusing sequence; and from the bilateral posterior cingulate cortex (PCC; Braak IV), bilateral precuneus (Braak V), and bilateral precentral gyrus (Braak VI) using a multi-voxel echo-planar spectroscopic imaging sequence. Pearson and Spearman correlations were used to examine the relationships between absolute levels of choline, creatine, myo-inositol, Glx, and NAA and CSF p-tau181, and between these metabolites and hippocampal volume or parietal cortical thicknesses. Covariates included age, sex, years of education, Fazekas score, and months between CSF collection and MRI exam. RESULTS: There was a direct correlation between hippocampal Glx and CSF p-tau181 in APOE4 carriers (Pearson's r = 0.76, p = 0.02), but not after adjusting for covariates. In the entire cohort, there was a direct correlation between hippocampal NAA and hippocampal volume (Spearman's r = 0.55, p = 0.001), even after adjusting for age and Fazekas score (Spearman's r = 0.48, p = 0.006). This relationship was observed only in APOE4 carriers (Pearson's r = 0.66, p = 0.017), and was also retained after adjustment (Pearson's r = 0.76, p = 0.008; metabolite-by-carrier interaction p = 0.03). There were no findings in the PCC, nor in the negative control (late Braak stage) regions of the precuneus and precentral gyrus. CONCLUSIONS: Our findings are in line with the spatially- and temporally-resolved Braak staging model of pathological severity in which the hippocampus is affected earlier than the PCC. The correlations, between MRS markers of synaptic and neuronal health and, respectively, T and N pathology, were found exclusively within APOE4 carriers, suggesting a connection with AD pathological change, rather than with normal aging. We therefore conclude that MRS has the potential to augment early A/T/N staging, with the hippocampus serving as a more sensitive MRS target compared to the PCC.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Biomarkers , Magnetic Resonance Spectroscopy , tau Proteins , Humans , Apolipoprotein E4/genetics , Aged , Female , Male , tau Proteins/cerebrospinal fluid , tau Proteins/genetics , tau Proteins/metabolism , Retrospective Studies , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Alzheimer Disease/diagnostic imaging , Aged, 80 and over , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Alleles , Middle Aged , Hippocampus/diagnostic imaging , Hippocampus/pathology , Hippocampus/metabolism
3.
Neuroimage Clin ; 37: 103325, 2023.
Article in English | MEDLINE | ID: mdl-36724732

ABSTRACT

PURPOSE: Proton magnetic resonance spectroscopy (1H MRS) offers biomarkers of metabolic damage after mild traumatic brain injury (mTBI), but a lack of replicability studies hampers clinical translation. In a conceptual replication study design, the results reported in four previous publications were used as the hypotheses (H1-H7), specifically: abnormalities in patients are diffuse (H1), confined to white matter (WM) (H2), comprise low N-acetyl-aspartate (NAA) levels and normal choline (Cho), creatine (Cr) and myo-inositol (mI) (H3), and correlate with clinical outcome (H4); additionally, a lack of findings in regional subcortical WM (H5) and deep gray matter (GM) structures (H6), except for higher mI in patients' putamen (H7). METHODS: 26 mTBI patients (20 female, age 36.5 ± 12.5 [mean ± standard deviation] years), within two months from injury and 21 age-, sex-, and education-matched healthy controls were scanned at 3 Tesla with 3D echo-planar spectroscopic imaging. To test H1-H3, global analysis using linear regression was used to obtain metabolite levels of GM and WM in each brain lobe. For H4, patients were stratified into non-recovered and recovered subgroups using the Glasgow Outcome Scale Extended. To test H5-H7, regional analysis using spectral averaging estimated metabolite levels in four GM and six WM structures segmented from T1-weighted MRI. The Mann-Whitney U test and weighted least squares analysis of covariance were used to examine mean group differences in metabolite levels between all patients and all controls (H1-H3, H5-H7), and between recovered and non-recovered patients and their respectively matched controls (H4). Replicability was defined as the support or failure to support the null hypotheses in accordance with the content of H1-H7, and was further evaluated using percent differences, coefficients of variation, and effect size (Cohen's d). RESULTS: Patients' occipital lobe WM Cho and Cr levels were 6.0% and 4.6% higher than controls', respectively (Cho, d = 0.37, p = 0.04; Cr, d = 0.63, p = 0.03). The same findings, i.e., higher patients' occipital lobe WM Cho and Cr (both p = 0.01), but with larger percent differences (Cho, 8.6%; Cr, 6.3%) and effect sizes (Cho, d = 0.52; Cr, d = 0.88) were found in the comparison of non-recovered patients to their matched controls. For the lobar WM Cho and Cr comparisons without statistical significance (frontal, parietal, temporal), unidirectional effect sizes were observed (Cho, d = 0.07 - 0.37; Cr, d = 0.27 - 0.63). No differences were found in any metabolite in any lobe in the comparison between recovered patients and their matched controls. In the regional analyses, no differences in metabolite levels were found in any GM or WM region, but all WM regions (posterior, frontal, corona radiata, and the genu, body, and splenium of the corpus callosum) exhibited unidirectional effect sizes for Cho and Cr (Cho, d = 0.03 - 0.34; Cr, d = 0.16 - 0.51). CONCLUSIONS: We replicated findings of diffuse WM injury, which correlated with clinical outcome (supporting H1-H2, H4). These findings, however, were among the glial markers Cho and Cr, not the neuronal marker NAA (not supporting H3). No differences were found in regional GM and WM metabolite levels (supporting H5-H6), nor in putaminal mI (not supporting H7). Unidirectional effect sizes of higher patients' Cho and Cr within all WM analyses suggest widespread injury, and are in line with the conclusion from the previous publications, i.e., that detection of WM injury may be more dependent upon sensitivity of the 1H MRS technique than on the selection of specific regions. The findings lend further support to the corollary that clinic-ready 1H MRS biomarkers for mTBI may best be achieved by using high signal-to-noise-ratio single-voxels placed anywhere within WM. The biochemical signature of the injury, however, may differ and therefore absolute levels, rather than ratios may be preferred. Future replication efforts should further test the generalizability of these findings.


Subject(s)
Brain Concussion , Brain Injuries , Humans , Female , Young Adult , Adult , Middle Aged , Proton Magnetic Resonance Spectroscopy , Brain Concussion/pathology , Magnetic Resonance Spectroscopy/methods , Protons , Brain Injuries/pathology , Brain/pathology , Aspartic Acid , Creatine/metabolism , Choline/metabolism
4.
Eur Radiol ; 32(2): 1308-1319, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34410458

ABSTRACT

OBJECTIVES: To assess whether MR fingerprinting (MRF)-based relaxation properties exhibit cross-sectional and prospective correlations with patient outcome and compare the results with those from DTI. METHODS: Clinical imaging, MRF, and DTI were acquired in patients (24 ± 10 days after injury (timepoint 1) and 90 ± 17 days after injury (timepoint 2)) and once in controls. Patient outcome was assessed with global functioning, symptom profile, and neuropsychological testing. ADC and fractional anisotropy (FA) from DTI and T1 and T2 from MRF were compared in 12 gray and white matter regions with Mann-Whitney tests. Bivariate associations between MR measures and outcome were assessed using the Spearman correlation and logistic regression. RESULTS: Data from 22 patients (38 ± 12 years; 17 women) and 18 controls (32 ± 8 years; 12 women) were analyzed. Fourteen patients (37 ± 12 years; 11 women) returned for timepoint 2, while two patients provided only timepoint 2 clinical outcome data. At timepoint 1, there were no differences between patients and controls in T1, T2, and ADC, while FA was lower in mTBI frontal white matter. T1 at timepoint 1 and the change in T1 exhibited more (n = 18) moderate to strong correlations (|r|= 0.6-0.85) with clinical outcome at timepoint 2 than T2 (n = 3), FA (n = 7), and ADC (n = 2). High T1 at timepoint 1, and serially increasing T1, accounted for five of the six MR measures with the highest utility for identification of non-recovered patients at timepoint 2 (AUC > 0.80). CONCLUSION: T1 derived from MRF was found to have higher utility than T2, FA, and ADC for predicting 3-month outcome after mTBI. KEY POINTS: • In a region-of-interest approach, FA, ADC, and T1 and T2 all showed limited utility in differentiating patients from controls at an average of 24 and 90 days post-mild traumatic brain injury. • T1 at 24 days, and the serial change in T1, revealed more and stronger predictive correlations with clinical outcome at 90 days than did T2, ADC, or FA. • T1 showed better prospective identification of non-recovered patients at 90 days than ADC, T2, and FA.


Subject(s)
Brain Concussion , Brain , Brain Concussion/diagnostic imaging , Cross-Sectional Studies , Female , Humans , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Prospective Studies
5.
Front Neurol ; 13: 1045678, 2022.
Article in English | MEDLINE | ID: mdl-36686533

ABSTRACT

Magnetic resonance spectroscopy is a powerful, non-invasive, quantitative imaging technique that allows for the measurement of brain metabolites that has demonstrated utility in diagnosing and characterizing a broad range of neurological diseases. Its impact, however, has been limited due to small sample sizes and methodological variability in addition to intrinsic limitations of the method itself such as its sensitivity to motion. The lack of standardization from a data acquisition and data processing perspective makes it difficult to pool multiple studies and/or conduct multisite studies that are necessary for supporting clinically relevant findings. Based on the experience of the ENIGMA MRS work group and a review of the literature, this manuscript provides an overview of the current state of MRS data harmonization. Key factors that need to be taken into consideration when conducting both retrospective and prospective studies are described. These include (1) MRS acquisition issues such as pulse sequence, RF and B0 calibrations, echo time, and SNR; (2) data processing issues such as pre-processing steps, modeling, and quantitation; and (3) biological factors such as voxel location, age, sex, and pathology. Various approaches to MRS data harmonization are then described including meta-analysis, mega-analysis, linear modeling, ComBat and artificial intelligence approaches. The goal is to provide both novice and experienced readers with the necessary knowledge for conducting MRS data harmonization studies.

6.
NMR Biomed ; 34(8): e4538, 2021 08.
Article in English | MEDLINE | ID: mdl-33956374

ABSTRACT

The hippocampus is one of the most challenging brain regions for proton MR spectroscopy (MRS) applications. Moreover, quantification of J-coupled species such as myo-inositol (m-Ins) and glutamate + glutamine (Glx) is affected by the presence of macromolecular background. While long echo time (TE) MRS eliminates the macromolecules, it also decreases the m-Ins and Glx signal and, as a result, these metabolites are studied mainly with short TE. Here, we investigate the feasibility of reproducibly measuring their concentrations at a long TE of 120 ms, using a semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence, as this sequence was recently recommended as a standard for clinical MRS. Gradient offset-independent adiabatic refocusing pulses were implemented, and an optimal long TE for the detection of m-Ins and Glx was determined using the T2 relaxation times of macromolecules. Metabolite concentrations and their coefficients of variation (CVs) were obtained for a 3.4-mL voxel centered on the left hippocampus on 3-T MR systems at two different sites with three healthy subjects (aged 32.5 ± 10.2 years [mean ± standard deviation]) per site, with each subject scanned over two sessions, and with each session comprising three scans. Concentrations of m-Ins, choline, creatine, Glx and N-acetyl-aspartate were 5.4 ± 1.5, 1.7 ± 0.2, 5.8 ± 0.3, 11.6 ± 1.2 and 5.9 ± 0.4 mM (mean ± standard deviation), respectively. Their respective mean within-session CVs were 14.5% ± 5.9%, 6.5% ± 5.3%, 6.0% ± 3.4%, 10.6% ± 6.2% and 3.5% ± 1.4%, and their mean within-subject CVs were 17.8% ± 18.2%, 7.5% ± 6.3%, 7.4% ± 6.4%, 12.4% ± 5.3% and 4.8% ± 3.0%. The between-subject CVs were 25.0%, 12.3%, 5.3%, 10.7% and 6.4%, respectively. Hippocampal long-TE sLASER single voxel spectroscopy can provide macromolecule-independent assessment of all major metabolites including Glx and m-Ins.


Subject(s)
Algorithms , Hippocampus/diagnostic imaging , Magnetic Resonance Spectroscopy , Adult , Computer Simulation , Female , Humans , Male , Metabolome , Time Factors
7.
Brain Commun ; 3(2): fcab051, 2021.
Article in English | MEDLINE | ID: mdl-33928248

ABSTRACT

The pathological cascade of tissue damage in mild traumatic brain injury is set forth by a perturbation in ionic homeostasis. However, whether this class of injury can be detected in vivo and serve as a surrogate marker of clinical outcome is unknown. We employ sodium MRI to test the hypotheses that regional and global total sodium concentrations: (i) are higher in patients than in controls and (ii) correlate with clinical presentation and neuropsychological function. Given the novelty of sodium imaging in traumatic brain injury, effect sizes from (i), and correlation types and strength from (ii), were compared to those obtained using standard diffusion imaging metrics. Twenty-seven patients (20 female, age 35.9 ± 12.2 years) within 2 months after injury and 19 controls were scanned with proton and sodium MRI at 3 Tesla. Total sodium concentration, fractional anisotropy and apparent diffusion coefficient were obtained with voxel averaging across 12 grey and white matter regions. Linear regression was used to obtain global grey and white matter total sodium concentrations. Patient outcome was assessed with global functioning, symptom profiles and neuropsychological function assessments. In the regional analysis, there were no statistically significant differences between patients and controls in apparent diffusion coefficient, while differences in sodium concentration and fractional anisotropy were found only in single regions. However, for each of the 12 regions, sodium concentration effect sizes were uni-directional, due to lower mean sodium concentration in patients compared to controls. Consequently, linear regression analysis found statistically significant lower global grey and white matter sodium concentrations in patients compared to controls. The strongest correlation with outcome was between global grey matter sodium concentration and the composite z-score from the neuropsychological testing. In conclusion, both sodium concentration and diffusion showed poor utility in differentiating patients from controls, and weak correlations with clinical presentation, when using a region-based approach. In contrast, sodium linear regression, capitalizing on partial volume correction and high sensitivity to global changes, revealed high effect sizes and associations with patient outcome. This suggests that well-recognized sodium imbalances in traumatic brain injury are (i) detectable non-invasively; (ii) non-focal; (iii) occur even when the antecedent injury is clinically mild. Finally, in contrast to our principle hypothesis, patients' sodium concentrations were lower than controls, indicating that the biological effect of traumatic brain injury on the sodium homeostasis may differ from that in other neurological disorders. Note: This figure has been annotated.

8.
Brain Imaging Behav ; 15(2): 504-525, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32797399

ABSTRACT

Proton (1H) magnetic resonance spectroscopy provides a non-invasive and quantitative measure of brain metabolites. Traumatic brain injury impacts cerebral metabolism and a number of research groups have successfully used this technique as a biomarker of injury and/or outcome in both pediatric and adult TBI populations. However, this technique is underutilized, with studies being performed primarily at centers with access to MR research support. In this paper we present a technical introduction to the acquisition and analysis of in vivo 1H magnetic resonance spectroscopy and review 1H magnetic resonance spectroscopy findings in different injury populations. In addition, we propose a basic 1H magnetic resonance spectroscopy data acquisition scheme (Supplemental Information) that can be added to any imaging protocol, regardless of clinical magnetic resonance platform. We outline a number of considerations for study design as a way of encouraging the use of 1H magnetic resonance spectroscopy in the study of traumatic brain injury, as well as recommendations to improve data harmonization across groups already using this technique.


Subject(s)
Brain Injuries, Traumatic , Magnetic Resonance Imaging , Adult , Brain/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Child , Humans , Magnetic Resonance Spectroscopy , Proton Magnetic Resonance Spectroscopy
9.
Neurobiol Aging ; 98: 42-51, 2021 02.
Article in English | MEDLINE | ID: mdl-33232854

ABSTRACT

We characterize the whole-brain N-acetyl-aspartate (WBNAA) and brain tissue fractions across the adult lifespan and test the hypothesis that, despite age-related atrophy, neuronal integrity (reflected by WBNAA) is preserved in normal aging. Two-hundred-and-seven participants: 133 cognitively intact older adults (73.6 ± 7.4 mean ± standard deviation, range: 60-90 year old) and 84 young (37.9 ± 11, range: 21-59 year old) were scanned with proton magnetic resonance spectroscopy and T1-weighted MRI. Their WBNAA, fractional brain parenchyma, and gray and white matter volumes (fBPV, fGM, and fWM) were compared and modeled as functions of age and sex. Compared with young, older-adults' WBNAA was lower by ~35%, and fBPV, fGM and fWM were lower by ~10%. Linear regressions found 0.5%/year WBNAA and 0.2%/year fBPV and fGM declines, whereas fWM rose to age ~40 years, and declined thereafter. fBPV and fGM were 1.8% and 4% higher in women, with no sex decline rates difference. We conclude that contrary to our hypothesis, atrophy was accompanied by WBNAA decline. Across the entire age range, women's brains showed less atrophy than men's. Formulas to estimate WBNAA and brain tissue fractions in healthy adults are provided to help differentiate normal from abnormal aging.


Subject(s)
Brain/metabolism , Brain/pathology , Healthy Aging/metabolism , Healthy Aging/pathology , Aged , Aged, 80 and over , Aspartic Acid/analogs & derivatives , Atrophy , Female , Gray Matter/metabolism , Gray Matter/pathology , Humans , Male , Middle Aged , Organ Size , Sex Characteristics
10.
Magn Reson Med ; 83(1): 22-44, 2020 01.
Article in English | MEDLINE | ID: mdl-31393032

ABSTRACT

PURPOSE: Unlike conventional MR spectroscopy (MRS), which only measures metabolite concentrations, multiparametric MRS also quantifies their longitudinal (T1 ) and transverse (T2 ) relaxation times, as well as the radiofrequency transmitter inhomogeneity (B1+ ). To test whether knowledge of these additional parameters can improve the clinical utility of brain MRS, we compare the conventional and multiparametric approaches in terms of expected classification accuracy in differentiating controls from patients with neurological disorders. THEORY AND METHODS: A literature review was conducted to compile metabolic concentrations and relaxation times in a wide range of neuropathologies and regions of interest. Simulations were performed to construct receiver operating characteristic curves and compute the associated areas (area under the curve) to examine the sensitivity and specificity of MRS for detecting each pathology in each region. Classification accuracy was assessed using metabolite concentrations corrected using population-averages for T1 , T2 , and B1+ (conventional MRS); using metabolite concentrations corrected using per-subject values (multiparametric MRS); and using an optimal linear multiparametric estimator comprised of the metabolites' concentrations and relaxation constants (multiparametric MRS). Additional simulations were conducted to find the minimal intra-subject precision needed for each parameter. RESULTS: Compared with conventional MRS, multiparametric approaches yielded area under the curve improvements for almost all neuropathologies and regions of interest. The median area under the curve increased by 0.14 over the entire dataset, and by 0.24 over the 10 instances with the largest individual increases. CONCLUSIONS: Multiparametric MRS can substantially improve the clinical utility of MRS in diagnosing and assessing brain pathology, motivating the design and use of novel multiparametric sequences.


Subject(s)
Magnetic Resonance Spectroscopy , Signal Processing, Computer-Assisted , Algorithms , Area Under Curve , Aspartic Acid/analogs & derivatives , Aspartic Acid/pharmacology , Biomarkers/metabolism , Computer Simulation , Diagnosis, Computer-Assisted/methods , Humans , Linear Models , Monte Carlo Method , Nervous System Diseases/diagnosis , Neurons/metabolism , Radio Waves , Reproducibility of Results
11.
J Magn Reson Imaging ; 50(5): 1424-1432, 2019 11.
Article in English | MEDLINE | ID: mdl-30868703

ABSTRACT

BACKGROUND: 3D brain proton MR spectroscopic imaging (1 H MRSI) facilitates simultaneous metabolic profiling of multiple loci, at higher, sub-1 cm3 , spatial resolution than single-voxel 1 H MRS with the ability to separate tissue-type partial volume contribution(s). PURPOSE: To determine if: 1) white matter (WM) damage in mild traumatic brain injury (mTBI) is homogeneously diffuse, or if specific regions are more affected; 2) partial-volume-corrected, structure-specific 1 H MRSI voxel averaging is sensitive to regional WM metabolic abnormalities. STUDY TYPE: Retrospective cross-sectional cohort study. POPULATION: Twenty-seven subjects: 15 symptomatic mTBI patients, 12 matched controls. FIELD STRENGTH/SEQUENCE: 3T using 3D 1 H MRSI over a 360-cm3 volume of interest (VOI) centered over the corpus callosum, partitioned into 480 voxels, each 0.75 cm3 . ASSESSMENT: N-acetyl-aspartate (NAA), creatine, choline, and myo-inositol concentrations estimated in predominantly WM regions: body, genu, and splenium of the corpus callosum, corona radiata, frontal, and occipital WM. STATISTICAL TESTS: Analysis of covariance (ANCOVA) to compare patients with controls in terms of regional concentrations. The effect sizes (Cohen's d) of the mean differences were compared across regions and with previously published global data obtained with linear regression of the WM over the entire VOI in the same dataset. RESULTS: Despite patients' global VOI WM NAA being significantly lower than the controls', no regional differences were observed for any metabolite. Regional NAA comparisons, however, were all unidirectional (patients' NAA concentrations < controls') within a narrow range: 0.3 ≤ Cohen's d ≤ 0.6. DATA CONCLUSION: Since the patient group was symptomatic and exhibiting global WM NAA deficits, these findings suggest: 1) diffuse axonal mTBI damage; that is 2) below the 1 H MRSI detection threshold in small regions. Therefore, larger, ie, more sensitive, single-voxel 1 H MRS, placed anywhere in WM regions, may be well suited for mTBI 1 H MRS studies, given that these results are confirmed in other cohorts. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1424-1432.


Subject(s)
Brain Injuries, Traumatic/diagnostic imaging , Proton Magnetic Resonance Spectroscopy/methods , White Matter/diagnostic imaging , Adolescent , Adult , Case-Control Studies , Cross-Sectional Studies , Female , Humans , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Male , Middle Aged , Retrospective Studies , Young Adult
13.
Epilepsy Res ; 139: 85-91, 2018 01.
Article in English | MEDLINE | ID: mdl-29212047

ABSTRACT

OBJECTIVE: To test the hypothesis that localization-related epilepsy is associated with widespread neuronal dysfunction beyond the ictal focus, reflected by a decrease in patients' global concentration of their proton MR spectroscopy (1H-MRS) observed marker, N-acetyl-aspartate (NAA). METHODS: Thirteen patients with localization-related epilepsy (7 men, 6 women) 40±13 (mean±standard-deviation)years old, 8.3±13.4years of disease duration; and 14 matched controls, were scanned at 3 T with MRI and whole-brain (WB) 1H MRS. Intracranial fractions of brain volume, gray and white matter (fBV, fGM, fWM) were segmented from the MRI, and global absolute NAA creatine (Cr) and choline (Cho) concentrations were estimated from their WB 1H MRS. These metrics were compared between patients and controls using an unequal variance t test. RESULTS: Patients' fBV, fGM and fWM: 0.81±0.07, 0.47±0.04, 0.31±0.04 were not different from controls' 0.79±0.05, 0.48±0.04, 0.32±0.02; nor were their Cr and Cho concentrations: 7.1±1.1 and 1.3±0.2 millimolar (mM) versus 7.7±0.7 and 1.4±0.1mM (p>0.05 all). Patients' global NAA concentration: 11.5±1.5 mM, however, was 12% lower than controls' 13.0±0.8mM (p=0.004). CONCLUSIONS: These findings indicate that neuronal dysfunction in localization-related epilepsy extends globally, beyond the ictal zone, but without atrophy or spectroscopic evidence of other pathology. This suggests a diffuse decline in the neurons' health, rather than their number, early in the disease course. WB 1H-MRS assessment, therefore, may be a useful tool for quantification of global neuronal dysfunction load in epilepsy.


Subject(s)
Aspartic Acid/analogs & derivatives , Brain/diagnostic imaging , Brain/metabolism , Epilepsies, Partial/diagnostic imaging , Epilepsies, Partial/metabolism , Proton Magnetic Resonance Spectroscopy , Adult , Aspartic Acid/metabolism , Atrophy , Brain/pathology , Cohort Studies , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Young Adult
14.
Neuroimaging Clin N Am ; 28(1): 91-105, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29157856

ABSTRACT

Although susceptibility-weighted imaging (SWI) studies have suggested an increased number of microhemorrhages in concussion, most show no significant differences compared with controls. There have been mixed results on using SWI to predict neurologic outcomes. Drawbacks include inability to time microhemorrhages and difficulty in attributing them to the concussion. Magnetic resonance spectroscopy (MRS) in concussion can identify metabolic abnormalities, with many studies showing correlations with clinical outcome. Applications in individual patients are impeded by conflicting data and lack of consensus on an optimal protocol. Therefore, currently MRS has most utility in group-level comparisons designed to reveal the pathophysiology of concussion.


Subject(s)
Brain Concussion/diagnostic imaging , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy/methods , Animals , Brain/diagnostic imaging , Humans
15.
NMR Biomed ; 30(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28678429

ABSTRACT

Total N-acetyl-aspartate + N-acetyl-aspartate-glutamate (NAA), total creatine (Cr) and total choline (Cho) proton MRS (1 H-MRS) signals are often used as surrogate markers in diffuse neurological pathologies, but spatial coverage of this methodology is limited to 1%-65% of the brain. Here we wish to demonstrate that non-localized, whole-head (WH) 1 H-MRS captures just the brain's contribution to the Cho and Cr signals, ignoring all other compartments. Towards this end, 27 young healthy adults (18 men, 9 women), 29.9 ± 8.5 years old, were recruited and underwent T1 -weighted MRI for tissue segmentation, non-localizing, approximately 3 min WH 1 H-MRS (TE /TR /TI  = 5/10/940 ms) and 30 min 1 H-MR spectroscopic imaging (MRSI) (TE /TR  = 35/2100 ms) in a 360 cm3 volume of interest (VOI) at the brain's center. The VOI absolute NAA, Cr and Cho concentrations, 7.7 ± 0.5, 5.5 ± 0.4 and 1.3 ± 0.2 mM, were all within 10% of the WH: 8.6 ± 1.1, 6.0 ± 1.0 and 1.3 ± 0.2 mM. The mean NAA/Cr and NAA/Cho ratios in the WH were only slightly higher than the "brain-only" VOI: 1.5 versus 1.4 (7%) and 6.6 versus 5.9 (11%); Cho/Cr were not different. The brain/WH volume ratio was 0.31 ± 0.03 (brain ≈ 30% of WH volume). Air-tissue susceptibility-driven local magnetic field changes going from the brain outwards showed sharp gradients of more than 100 Hz/cm (1 ppm/cm), explaining the skull's Cr and Cho signal losses through resonance shifts, line broadening and destructive interference. The similarity of non-localized WH and localized VOI NAA, Cr and Cho concentrations and their ratios suggests that their signals originate predominantly from the brain. Therefore, the fast, comprehensive WH-1 H-MRS method may facilitate quantification of these metabolites, which are common surrogate markers in neurological disorders.


Subject(s)
Brain/metabolism , Magnetic Resonance Spectroscopy/methods , Protons , Adolescent , Adult , Aspartic Acid/analogs & derivatives , Choline/metabolism , Creatine/metabolism , Female , Humans , Male , Middle Aged , Young Adult
16.
Hum Brain Mapp ; 38(8): 4047-4063, 2017 08.
Article in English | MEDLINE | ID: mdl-28523763

ABSTRACT

Although MRI assessment of white matter lesions is essential for the clinical management of multiple sclerosis, the processes leading to the formation of lesions and underlying their subsequent MRI appearance are incompletely understood. We used proton MR spectroscopy to study the evolution of N-acetyl-aspartate (NAA), creatine (Cr), choline (Cho), and myo-inositol (mI) in pre-lesional tissue, persistent and transient new lesions, as well as in chronic lesions, and related the results to quantitative MRI measures of T1-hypointensity and T2-volume. Within 10 patients with relapsing-remitting course, there were 180 regions-of-interest consisting of up to seven semi-annual follow-ups of normal-appearing white matter (NAWM, n = 10), pre-lesional tissue giving rise to acute lesions which resolved (n = 3) or persisted (n = 3), and of moderately (n = 9) and severely hypointense (n = 6) chronic lesions. Compared with NAWM, pre-lesional tissue had higher Cr and Cho, while compared with lesions, pre-lesional tissue had higher NAA. Resolving acute lesions showed similar NAA levels pre- and post-formation, suggesting no long-term axonal damage. In chronic lesions, there was an increase in mI, suggesting accumulating astrogliosis. Lesion volume was a better predictor of axonal health than T1-hypointensity, with lesions larger than 1.5 cm3 uniformly exhibiting very low (<4.5 millimolar) NAA concentrations. A positive correlation between longitudinal changes in Cho and in lesion volume in moderately hypointense lesions implied that lesion size is mediated by chronic inflammation. These and other results are integrated in a discussion on the steady-state metabolism of lesion evolution in multiple sclerosis, viewed in the context of conventional MRI measures. Hum Brain Mapp 38:4047-4063, 2017. © 2017 Wiley Periodicals, Inc.


Subject(s)
Brain/diagnostic imaging , Brain/metabolism , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/metabolism , Proton Magnetic Resonance Spectroscopy , Adult , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Choline/metabolism , Creatine/metabolism , Cross-Sectional Studies , Disease Progression , Female , Follow-Up Studies , Humans , Inositol/metabolism , Longitudinal Studies , Male , Organ Size , White Matter/diagnostic imaging , White Matter/metabolism , Young Adult
17.
NMR Biomed ; 30(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28272763

ABSTRACT

Metabolite levels measured using magnetic resonance spectroscopy (MRS) are often expressed as ratios rather than absolute concentrations. However, the inter-subject variability of the denominator metabolite can introduce uncertainty into a metabolite ratio. In a clinical setting, there are no guidelines on whether ratios or absolute quantification should be used for a more accurate classification of normal versus abnormal results based on their statistical properties. In a research setting, the choice of one over the other can have significant implications on sample size, which must be factored in at the study design stage. Herein, we derive the probability distribution function for the ratio of two normally distributed random variables, and present analytical expressions for the comparison of ratios with absolute quantification in terms of both sample size and area under the receiver operator characteristic curve. The two approaches are compared for typical metabolite values found in the literature, and their respective merits are illustrated using previously acquired clinical MRS data in two pathologies: mild traumatic brain injury and multiple sclerosis. Our analysis shows that the decision between ratios and absolute quantification is non-trivial: in some cases, ratios might offer a reduction in sample size, whereas, in others, absolute quantification might prove more desirable for individual (i.e. clinical) use. The decision is straightforward and exact guidelines are provided in the text, given that population means and standard deviations of numerator and denominator can be reliably estimated.


Subject(s)
Algorithms , Aspartic Acid/analogs & derivatives , Brain Injuries/metabolism , Brain/metabolism , Choline/metabolism , Data Interpretation, Statistical , Magnetic Resonance Spectroscopy/methods , Adult , Aspartic Acid/metabolism , Biomarkers/metabolism , Female , Humans , Male , Metabolic Flux Analysis/methods , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
18.
Neuroimage Clin ; 14: 363-370, 2017.
Article in English | MEDLINE | ID: mdl-28239545

ABSTRACT

INTRODUCTION: Quantitative T2 mapping may provide an objective biomarker for occult nervous tissue pathology in relapsing-remitting multiple sclerosis (RRMS). We applied a novel echo modulation curve (EMC) algorithm to identify T2 changes in normal-appearing brain regions of subjects with RRMS (N = 27) compared to age-matched controls (N = 38). METHODS: The EMC algorithm uses Bloch simulations to model T2 decay curves in multi-spin-echo MRI sequences, independent of scanner, and scan-settings. T2 values were extracted from normal-appearing white and gray matter brain regions using both expert manual regions-of-interest and user-independent FreeSurfer segmentation. RESULTS: Compared to conventional exponential T2 modeling, EMC fitting provided more accurate estimations of T2 with less variance across scans, MRI systems, and healthy individuals. Thalamic T2 was increased 8.5% in RRMS subjects (p < 0.001) and could be used to discriminate RRMS from healthy controls well (AUC = 0.913). Manual segmentation detected both statistically significant increases (corpus callosum & temporal stem) and decreases (posterior limb internal capsule) in T2 associated with RRMS diagnosis (all p < 0.05). In healthy controls, we also observed statistically significant T2 differences for different white and gray matter structures. CONCLUSIONS: The EMC algorithm precisely characterizes T2 values, and is able to detect subtle T2 changes in normal-appearing brain regions of RRMS patients. These presumably capture both axon and myelin changes from inflammation and neurodegeneration. Further, T2 variations between different brain regions of healthy controls may correlate with distinct nervous tissue environments that differ from one another at a mesoscopic length-scale.


Subject(s)
Brain Mapping , Brain/diagnostic imaging , Magnetic Resonance Imaging , Multiple Sclerosis, Relapsing-Remitting/pathology , Adult , Algorithms , Analysis of Variance , Area Under Curve , Case-Control Studies , Female , Humans , Image Processing, Computer-Assisted , Male , Middle Aged , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging
19.
Magn Reson Imaging ; 35: 15-19, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27580518

ABSTRACT

BACKGROUND AND PURPOSE: To assess the sensitivity of non-localized, whole-head 1H-MRS to an individual's serial changes in total-brain NAA, Glx, Cr and Cho concentrations - metabolite metrics often used as surrogate markers in neurological pathologies. MATERIALS AND METHODS: In this prospective study, four back-to-back (single imaging session) and three serial (successive sessions) non-localizing, ~3min 1H-MRS (TE/TR/TI=5/104/940ms) scans were performed on 18 healthy young volunteers: 9 women, 9 men: 29.9±7.6 [mean±standard deviation (SD)] years old. These were analyzed by calculating a within-subject coefficient of variation (CV=SD/mean) to assess intra- and inter-scan repeatability and prediction intervals. This study was Health Insurance Portability and Accountability Act compliant. All subjects gave institutional review board-approved written, informed consent. RESULTS: The intra-scan CVs for the NAA, Glx, Cr and Cho were: 3.9±1.8%, 7.3±4.6%, 4.0±3.4% and 2.5±1.6%, and the corresponding inter-scan (longitudinal) values were: 7.0±3.1%, 10.6±5.6%, 7.6±3.5% and 7.0±3.9%. This method is shown to have 80% power to detect changes of 14%, 27%, 26% and 19% between two serial measurements in a given individual. CONCLUSIONS: Subject to the assumption that in neurological disorders NAA, Glx, Cr and Cho changes represent brain-only pathology and not muscles, bone marrow, adipose tissue or epithelial cells, this approach enables us to quantify them, thereby adding specificity to the assessment of the total disease load. This will facilitate monitoring diffuse pathologies with faster measurement, more extensive (~90% of the brain) spatial coverage and sensitivity than localized 1H-MRS.


Subject(s)
Brain/metabolism , Proton Magnetic Resonance Spectroscopy/methods , Adolescent , Adult , Aspartic Acid/analogs & derivatives , Aspartic Acid/metabolism , Brain/diagnostic imaging , Choline/metabolism , Creatine/metabolism , Female , Glutamic Acid/metabolism , Glutamine/metabolism , Humans , Male , Prospective Studies , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Young Adult
20.
Radiology ; 279(3): 693-707, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27183405

ABSTRACT

Mild traumatic brain injury (mTBI), also commonly referred to as concussion, affects millions of Americans annually. Although computed tomography is the first-line imaging technique for all traumatic brain injury, it is incapable of providing long-term prognostic information in mTBI. In the past decade, the amount of research related to magnetic resonance (MR) imaging of mTBI has grown exponentially, partly due to development of novel analytical methods, which are applied to a variety of MR techniques. Here, evidence of subtle brain changes in mTBI as revealed by these techniques, which are not demonstrable by conventional imaging, will be reviewed. These changes can be considered in three main categories of brain structure, function, and metabolism. Macrostructural and microstructural changes have been revealed with three-dimensional MR imaging, susceptibility-weighted imaging, diffusion-weighted imaging, and higher order diffusion imaging. Functional abnormalities have been described with both task-mediated and resting-state blood oxygen level-dependent functional MR imaging. Metabolic changes suggesting neuronal injury have been demonstrated with MR spectroscopy. These findings improve understanding of the true impact of mTBI and its pathogenesis. Further investigation may eventually lead to improved diagnosis, prognosis, and management of this common and costly condition. (©) RSNA, 2016.


Subject(s)
Brain Injuries/diagnostic imaging , Magnetic Resonance Imaging , Adult , Attention Deficit Disorder with Hyperactivity/diagnostic imaging , Brain/diagnostic imaging , Brain Chemistry , Diffusion Magnetic Resonance Imaging , Female , Humans , Intracranial Hemorrhages/diagnostic imaging , Iron/analysis , Magnetic Fields , Magnetic Resonance Imaging/methods , Magnetic Resonance Spectroscopy , Memory Disorders/diagnostic imaging , Positron-Emission Tomography/methods
SELECTION OF CITATIONS
SEARCH DETAIL