Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosensors (Basel) ; 14(3)2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38534235

ABSTRACT

This work presents a low-cost transcription loop-mediated isothermal amplification (RT-LAMP) instrument for nucleic acid detection, employing an Arduino Nano microcontroller. The cooling system includes customized printed circuit boards (PCBs) that serve as electrical resistors and incorporate fans. An aluminum block is designed to accommodate eight vials. The system also includes two PCB heaters-one for sample heating and the other for vial lid heating to prevent condensation. The color detection system comprises a TCS3200 color 8-sensor array coupled to one side of the aluminum heater body and a white 8-LED array coupled to the other side, controlled by two Multiplexer/Demultiplexer devices. LED light passes through the sample, reaching the color sensor and conveying color information crucial for detection. The top board is maintained at 110 ± 2 °C, while the bottom board is held at 65 ± 0.5 °C throughout the RT-LAMP assay. Validation tests successfully demonstrated the efficacy of the colorimetric RT-LAMP reactions using SARS-CoV-2 RNA amplification as a sample viability test, achieving 100% sensitivity and 97.3% specificity with 66 clinical samples. Our instrument offers a cost-effective (USD 100) solution with automated result interpretation and superior sensitivity compared to visual inspection. While the prototype was tested with SARS-CoV-2 RNA samples, its versatility extends to detecting other pathogens using alternative primers, showcasing its potential for broader applications in biosensing.


Subject(s)
RNA, Viral , RNA-Directed DNA Polymerase , RNA-Directed DNA Polymerase/genetics , RNA, Viral/genetics , Aluminum , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , DNA-Directed RNA Polymerases , Sensitivity and Specificity
2.
Microchem J ; 180: 107600, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35620142

ABSTRACT

This work describes the development of a Point-of-Care (POC) Lab-on-a-Chip (LOC) instrument for diagnosis of SARS-CoV-2 by Reverse-Transcription Loop-mediated isothermal amplification (RT-LAMP). The hardware is based on a Raspberry Pi computer ($35), a video camera, an Arduino Nano microcontroller, a printed circuit board as a heater and a 3D printed housing. The chips were manufactured in polymethyl methacrylate (PMMA) using a CO2 laser cutting machine and sealed with a PCR optic plastic film. The chip temperature is precisely controlled by a proportional-integral-derivative (PID) algorithm. During the RT-LAMP amplifications the chip was maintained at ∼ (65.0 ± 0.1) °C for 25 minutes and 5 minutes cooling down, totaling a 30 minutes of reaction .The software interpretation occurs in less than a second. The chip design has four 25 µL chambers, two for clinical samples and two for positive and negative control-samples. The RT-LAMP master mix solution added in the chip chambers contains the pH indicator Phenol Red, that is pink (for pH ∼ 8.0) before amplification and becomes yellow (pH ∼ 6.0) if the genetic material is amplified. The RT-LAMP SARS-CoV-2 diagnostic was made by color image recognition using the OpenCV machine vision software library. The software was programmed to automatically distinguish the HSV color parameter distribution in each one of the four chip chambers. The instrument was successfully tested for SARS-CoV-2 diagnosis, in 22 clinic samples, 11 positives and 11 negatives, achieving an assertiveness of 86% when compared to the results obtained by RT-LAMP standard reactions performed in conventional PCR equipment.

SELECTION OF CITATIONS
SEARCH DETAIL
...