Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 464
Filter
1.
Commun Biol ; 7(1): 1131, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271940

ABSTRACT

Monocytes, the circulating macrophage precursors, contribute to diseases like atherosclerosis and asthma. Long non-coding RNAs (lncRNAs) have been shown to modulate the phenotype and inflammatory capacity of monocytes. We previously discovered the lncRNA SMANTIS, which contributes to cellular phenotype expression by controlling BRG1 in mesenchymal cells. Here, we report that SMANTIS is particularly highly expressed in monocytes and lost during differentiation into macrophages. Moreover, different types of myeloid leukemia presented specific SMANTIS expression patterns. Interaction studies revealed that SMANTIS binds RUNX1, a transcription factor frequently mutated in AML, primarily through its Alu-element on the RUNT domain. RNA-seq after CRISPR/Cas9-mediated deletion of SMANTIS or RUNX1 revealed an association with cell adhesion and both limited the monocyte adhesion to endothelial cells. Mechanistically, SMANTIS KO reduced RUNX1 genomic binding and altered the interaction of RUNX1 with EP300 and CBFB. Collectively, SMANTIS interacts with RUNX1 and attenuates monocyte adhesion, which might limit monocyte vascular egress.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Monocytes , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Monocytes/metabolism , Core Binding Factor Alpha 2 Subunit/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Cell Adhesion/genetics , Cell Differentiation
2.
Nucleic Acids Res ; 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39315698

ABSTRACT

Epigenetic aberration is one of the major driving factors in human cancer, often leading to acquired resistance to chemotherapies. Various small molecule epigenetic modulators have been reported. Nonetheless, outcomes from animal models and clinical trials have underscored the substantial setbacks attributed to pronounced on- and off-target toxicities. To address these challenges, CRISPR/dCas9 technology is emerging as a potent tool for precise modulation of epigenetic mechanism. However, this technology involves co-expressing exogenous epigenetic modulator proteins, which presents technical challenges in preparation and delivery with potential undesirable side effects. Recently, our research demonstrated that Cas9 tagged with the Phe-Cys-Pro-Phe (FCPF)-peptide motif can be specifically targeted by perfluorobiphenyl (PFB) derivatives. Here, we integrated the FCPF-tag into dCas9 and established a chemically inducible platform for epigenome editing, called Chem-CRISPR/dCas9FCPF. We designed a series of chemical inhibitor-PFB conjugates targeting various epigenetic modulator proteins. Focusing on JQ1, a panBET inhibitor, we demonstrate that c-MYC-sgRNA-guided JQ1-PFB specifically inhibits BRD4 in close proximity to the c-MYC promoter/enhancer, thereby effectively repressing the intricate transcription networks orchestrated by c-MYC as compared with JQ1 alone. In conclusion, our Chem-CRISPR/dCas9FCPF platform significantly increased target specificity of chemical epigenetic inhibitors, offering a viable alternative to conventional fusion protein systems for epigenome editing.

3.
Pflugers Arch ; 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39347835

ABSTRACT

Human 5-lipoxygenase (5-LO) is the key enzyme in the biosynthesis of leukotrienes, mediators of the innate immune system that also play an important role in inflammatory diseases and cancer. In this study, we present compounds, containing a Michael-reactive cyanoacrylate moiety as potent inhibitors of 5-LO. Representatives of the tyrosine kinase inhibitor family called tyrphostins, structurally related to known 5-LO inhibitors, were screened for their 5-LO inhibitory properties using recombinant human 5-LO, intact human PMNL (polymorphonuclear leukocytes), and PMNL homogenates. Their mode of action was characterized by the addition of glutathione, using a fourfold cysteine 5-LO mutant and mass spectrometry analysis. SAR studies revealed several members of the tyrphostin family containing a Michael-reactive cyanoacrylate to efficiently inhibit 5-LO. We identified degrasyn (IC50 0.11 µM), tyrphostin A9 (IC50 0.8 µM), AG879 (IC50 78 nM), and AG556 (IC50 64 nM) as potent 5-LO inhibitors. Mass spectrometry analysis revealed that degrasyn and AG556 covalently bound to up to four cysteines, including C416 and/or C418 which surround the substrate entry site. Furthermore, the 5-LO inhibitory effect of degrasyn was remarkably impaired by the addition of glutathione or by the mutation of cysteines to serines at the surface of 5-LO. We successfully identified several tyrphostins as potent inhibitors of human 5-LO. Degrasyn and AG556 were able to covalently bind to 5-LO via their cyanoacrylate moiety. This provides a promising mechanism for targeting 5-LO by Michael acceptors, leading to new therapeutic opportunities in the field of inflammation and cancer.

5.
Methods Mol Biol ; 2845: 203-218, 2024.
Article in English | MEDLINE | ID: mdl-39115669

ABSTRACT

The characterization of interactions between autophagy modifiers (Atg8-family proteins) and their natural ligands (peptides and proteins) or small molecules is important for a detailed understanding of selective autophagy mechanisms and for the design of potential Atg8 inhibitors that affect the autophagy processes in cells. The fluorescence polarization (FP) assay is a rapid, cost-effective, and robust method that provides affinity and selectivity information for small molecules and peptide ligands targeting human Atg8 proteins.This chapter introduces the basic principles of FP assays. In addition, a case study on peptide interaction with human Atg8 proteins (LC3/GABARAPs) is described. Finally, data analysis and quality control of FP assays are discussed for the proper calculation of Ki values for the measured compounds.


Subject(s)
Fluorescence Polarization , High-Throughput Screening Assays , Microtubule-Associated Proteins , Protein Binding , Humans , Microtubule-Associated Proteins/metabolism , High-Throughput Screening Assays/methods , Fluorescence Polarization/methods , Apoptosis Regulatory Proteins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Autophagy/drug effects , Peptides/metabolism , Peptides/chemistry , Ligands , Autophagy-Related Protein 8 Family/metabolism
6.
Cell Commun Signal ; 22(1): 415, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39192247

ABSTRACT

The antiapoptotic protein BCL2A1 is highly, but very heterogeneously expressed in Diffuse Large B-cell Lymphoma (DLBCL). Particularly in the context of resistance to current therapies, BCL2A1 appears to play an important role in protecting cancer cells from the induction of cell death. Reducing BCL2A1 levels may have therapeutic potential, however, no specific inhibitor is currently available. In this study, we hypothesized that the signaling network regulated by epigenetic readers may regulate the transcription of BCL2A1 and hence that inhibition of Bromodomain and Extra-Terminal (BET) proteins may reduce BCL2A1 expression thus leading to cell death in DLBCL cell lines. We found that the mechanisms of action of acetyl-lysine competitive BET inhibitors are different from those of proteolysis targeting chimeras (PROTACs) that induce the degradation of BET proteins. Both classes of BETi reduced the expression of BCL2A1 which coincided with a marked downregulation of c-MYC. Mechanistically, BET inhibition attenuated the constitutively active canonical nuclear factor kappa-light-chain-enhancer of activated B-cells (NFκB) signaling pathway and inhibited p65 activation. Furthermore, signal transducer of activated transcription (STAT) signaling was reduced by inhibiting BET proteins, targeting another pathway that is often constitutively active in DLBCL. Both pathways were also inhibited by the IκB kinase inhibitor TPCA-1, resulting in decreased BCL2A1 and c-MYC expression. Taken together, our study highlights a novel complex regulatory network that links BET proteins to both NFκB and STAT survival signaling pathways controlling both BCL2A1 and c-MYC expression in DLBCL.


Subject(s)
Lymphoma, Large B-Cell, Diffuse , NF-kappa B , Proto-Oncogene Proteins c-bcl-2 , Proto-Oncogene Proteins c-myc , Signal Transduction , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction/drug effects , NF-kappa B/metabolism , Cell Line, Tumor , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/genetics , Lymphoma, Large B-Cell, Diffuse/pathology , Gene Expression Regulation, Neoplastic/drug effects , Apoptosis/drug effects , Bromodomain Containing Proteins , Proteins , Minor Histocompatibility Antigens
7.
Methods Mol Biol ; 2845: 219-235, 2024.
Article in English | MEDLINE | ID: mdl-39115670

ABSTRACT

Isothermal titration calorimetry (ITC) is a widely used technique for the characterization of protein-protein and protein-ligand interactions. It provides information on the stoichiometry, affinity, and thermodynamic driving forces of interactions. This chapter exemplifies the use of ITC to investigate interactions between human autophagy modifiers (LC3/GABARAP proteins) and their interaction partners, the LIR motif-containing sequences. The purpose of this report is to present a detailed protocol for the production of LC3/GABARAP-interacting LIR peptides using E. coli expression systems. In addition, we outline the design of ITC experiments using the LC3/GABARAP:peptide interactions as an example. Comprehensive troubleshooting notes are provided to facilitate the adaptation of these protocols to different ligand-receptor systems. The methodology outlined for studying protein-ligand interactions will help to avoid common errors and misinterpretations of experimental results.


Subject(s)
Adaptor Proteins, Signal Transducing , Apoptosis Regulatory Proteins , Calorimetry , Microtubule-Associated Proteins , Protein Binding , Thermodynamics , Calorimetry/methods , Humans , Ligands , Microtubule-Associated Proteins/metabolism , Microtubule-Associated Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/chemistry , Escherichia coli/metabolism , Peptides/chemistry , Peptides/metabolism
8.
Nat Commun ; 15(1): 5646, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969708

ABSTRACT

Investigating ligand-protein complexes is essential in the areas of chemical biology and drug discovery. However, detailed information on key reagents such as fluorescent tracers and associated data for the development of widely used bioluminescence resonance energy transfer (BRET) assays including NanoBRET, time-resolved Förster resonance energy transfer (TR-FRET) and fluorescence polarization (FP) assays are not easily accessible to the research community. We created tracerDB, a curated database of validated tracers. This resource provides an open access knowledge base and a unified system for tracer and assay validation. The database is freely available at https://www.tracerdb.org/ .


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Crowdsourcing , Humans , Fluorescent Dyes/chemistry , Drug Discovery/methods , Ligands , Databases, Factual , Bioluminescence Resonance Energy Transfer Techniques/methods , Fluorescence Polarization/methods
9.
J Med Chem ; 67(15): 12632-12659, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39023313

ABSTRACT

Activin receptor-like kinases 1-7 (ALK1-7) regulate a complex network of SMAD-independent as well as SMAD-dependent signaling pathways. One of the widely used inhibitors for functional investigations of these processes, in particular for bone morphogenetic protein (BMP) signaling, is LDN-193189. However, LDN-193189 has insufficient kinome-wide selectivity complicating its use in cellular target validation assays. Herein, we report the identification and comprehensive characterization of two chemically distinct highly selective inhibitors of ALK1 and ALK2, M4K2234 and MU1700, along with their negative controls. We show that both MU1700 and M4K2234 efficiently block the BMP pathway via selective in cellulo inhibition of ALK1/2 kinases and exhibit favorable in vivo profiles in mice. MU1700 is highly brain penetrant and shows remarkably high accumulation in the brain. These high-quality orthogonal chemical probes offer the selectivity required to become widely used tools for in vitro and in vivo investigation of BMP signaling.


Subject(s)
Activin Receptors, Type II , Animals , Humans , Mice , Activin Receptors, Type II/metabolism , Activin Receptors, Type II/antagonists & inhibitors , Activin Receptors, Type I/antagonists & inhibitors , Activin Receptors, Type I/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship , Signal Transduction/drug effects , Drug Discovery , Molecular Probes/chemistry , Bone Morphogenetic Proteins/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrazoles/chemical synthesis
10.
Eur J Med Chem ; 276: 116672, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39067440

ABSTRACT

Casein kinase-2 (CK2) are serine/threonine kinases with dual co-factor (ATP and GTP) specificity, that are involved in the regulation of a wide variety of cellular functions. Small molecules targeting CK2 have been described in the literature targeting different binding pockets of the kinase with a focus on type I inhibitors such as the recently published chemical probe SGC-CK2-1. In this study, we investigated whether known allosteric inhibitors binding to a pocket adjacent to helix αD could be combined with ATP mimetic moieties defining a novel class of ATP competitive compounds with a unique binding mode. Linking both binding sites requires a chemical linking moiety that would introduce a 90-degree angle between the ATP mimetic ring system and the αD targeting moiety, which was realized using a sulfonamide. The synthesized inhibitors were highly selective for CK2 with binding constants in the nM range and low micromolar activity. While these inhibitors need to be further improved, the present work provides a structure-based design strategy for highly selective CK2 inhibitors.


Subject(s)
Casein Kinase II , Protein Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Humans , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/metabolism , Structure-Activity Relationship , Molecular Structure , Dose-Response Relationship, Drug , Models, Molecular , Adenosine Triphosphate/metabolism , Binding Sites
11.
J Med Chem ; 67(15): 12534-12552, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39028937

ABSTRACT

Macrocyclization of acyclic compounds is a powerful strategy for improving inhibitor potency and selectivity. Here we have optimized 2-aminopyrimidine-based macrocycles to use these compounds as chemical tools for the ephrin kinase family. Starting with a promiscuous macrocyclic inhibitor, 6, we performed a structure-guided activity relationship and selectivity study using a panel of over 100 kinases. The crystal structure of EPHA2 in complex with the developed macrocycle 23 provided a basis for further optimization by specifically targeting the back pocket, resulting in compound 55, a potent inhibitor of EPHA2/A4 and GAK. Subsequent front-pocket derivatization resulted in an interesting in cellulo selectivity profile, favoring EPHA4 over the other ephrin receptor kinase family members. The dual EPHA2/A4 and GAK inhibitor 55 prevented dengue virus infection of Huh7 liver cells. However, further investigations are needed to determine whether this was a compound-specific effect or target-related.


Subject(s)
Protein Kinase Inhibitors , Pyrimidines , Receptor, EphA2 , Humans , Cell Line, Tumor , Crystallography, X-Ray , Dengue Virus/drug effects , Intracellular Signaling Peptides and Proteins , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Models, Molecular , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidines/chemical synthesis , Receptor, EphA2/antagonists & inhibitors , Receptor, EphA2/metabolism , Structure-Activity Relationship , Morpholines
12.
ACS Chem Biol ; 19(7): 1638-1647, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38934237

ABSTRACT

TRIM7 is a ubiquitin E3 ligase with key regulatory functions, mediating viral infection, tumor biology, innate immunity, and cellular processes, such as autophagy and ferroptosis. It contains a PRYSPRY domain that specifically recognizes degron sequences containing C-terminal glutamine. Ligands that bind to the TRIM7 PRYSPRY domain may have applications in the treatment of viral infections, as modulators of inflammation, and in the design of a new class of PROTACs (PROteolysis TArgeting Chimeras) that mediate the selective degradation of therapeutically relevant proteins (POIs). Here, we developed an assay toolbox for the comprehensive evaluation of TRIM7 ligands. Using TRIM7 degron sequences together with a structure-based design, we developed the first series of peptidomimetic ligands with low micromolar affinity. The terminal carboxylate moiety was required for ligand activity but prevented cell penetration. A prodrug strategy using an ethyl ester resulted in enhanced permeability, which was evaluated using confocal imaging.


Subject(s)
Ubiquitin-Protein Ligases , Ligands , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/chemistry , Peptidomimetics/chemistry , Peptidomimetics/pharmacology , Proteolysis , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/chemistry , Prodrugs/chemistry , Prodrugs/pharmacology , Degrons
13.
Nat Commun ; 15(1): 5201, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890295

ABSTRACT

Nuclear receptors (NRs) regulate transcription in response to ligand binding and NR modulation allows pharmacological control of gene expression. Although some NRs are relevant as drug targets, the NR1 family, which comprises 19 NRs binding to hormones, vitamins, and lipid metabolites, has only been partially explored from a translational perspective. To enable systematic target identification and validation for this protein family in phenotypic settings, we present an NR1 chemogenomic (CG) compound set optimized for complementary activity/selectivity profiles and chemical diversity. Based on broad profiling of candidates for specificity, toxicity, and off-target liabilities, sixty-nine comprehensively annotated NR1 agonists, antagonists and inverse agonists covering all members of the NR1 family and meeting potency and selectivity standards are included in the final NR1 CG set. Proof-of-concept application of this set reveals effects of NR1 members in autophagy, neuroinflammation and cancer cell death, and confirms the suitability of the set for target identification and validation.


Subject(s)
Autophagy , Humans , Animals , Autophagy/drug effects , Autophagy/genetics , Ligands , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/agonists , Mice , HEK293 Cells , Genomics/methods , Cell Line, Tumor
14.
J Biol Chem ; 300(7): 107469, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38876305

ABSTRACT

Leucine rich repeat kinase 2 (LRRK2) is a large multidomain protein containing two catalytic domains, a kinase and a GTPase, as well as protein interactions domains, including a WD40 domain. The association of increased LRRK2 kinase activity with both the familial and sporadic forms of Parkinson's disease has led to an intense interest in determining its cellular function. However, small molecule probes that can bind to LRRK2 and report on or affect its cellular activity are needed. Here, we report the identification and characterization of the first high-affinity LRRK2-binding designed ankyrin-repeat protein (DARPin), named E11. Using cryo-EM, we show that DARPin E11 binds to the LRRK2 WD40 domain. LRRK2 bound to DARPin E11 showed improved behavior on cryo-EM grids, resulting in higher resolution LRRK2 structures. DARPin E11 did not affect the catalytic activity of a truncated form of LRRK2 in vitro but decreased the phosphorylation of Rab8A, a LRRK2 substrate, in cells. We also found that DARPin E11 disrupts the formation of microtubule-associated LRRK2 filaments in cells, which are known to require WD40-based dimerization. Thus, DARPin E11 is a new tool to explore the function and dysfunction of LRRK2 and guide the development of LRRK2 kinase inhibitors that target the WD40 domain instead of the kinase.


Subject(s)
Ankyrin Repeat , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , rab GTP-Binding Proteins , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/chemistry , Humans , Parkinson Disease/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , HEK293 Cells , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Phosphorylation , Cryoelectron Microscopy , Protein Binding
15.
Gut ; 73(9): 1509-1528, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-38821858

ABSTRACT

OBJECTIVE: The hallmark oncogene MYC drives the progression of most tumours, but direct inhibition of MYC by a small-molecule drug has not reached clinical testing. MYC is a transcription factor that depends on several binding partners to function. We therefore explored the possibility of targeting MYC via its interactome in pancreatic ductal adenocarcinoma (PDAC). DESIGN: To identify the most suitable targets among all MYC binding partners, we constructed a targeted shRNA library and performed screens in cultured PDAC cells and tumours in mice. RESULTS: Unexpectedly, many MYC binding partners were found to be important for cultured PDAC cells but dispensable in vivo. However, some were also essential for tumours in their natural environment and, among these, the ATPases RUVBL1 and RUVBL2 ranked first. Degradation of RUVBL1 by the auxin-degron system led to the arrest of cultured PDAC cells but not untransformed cells and to complete tumour regression in mice, which was preceded by immune cell infiltration. Mechanistically, RUVBL1 was required for MYC to establish oncogenic and immunoevasive gene expression identifying the RUVBL1/2 complex as a druggable vulnerability in MYC-driven cancer. CONCLUSION: One implication of our study is that PDAC cell dependencies are strongly influenced by the environment, so genetic screens should be performed in vitro and in vivo. Moreover, the auxin-degron system can be applied in a PDAC model, allowing target validation in living mice. Finally, by revealing the nuclear functions of the RUVBL1/2 complex, our study presents a pharmaceutical strategy to render pancreatic cancers potentially susceptible to immunotherapy.


Subject(s)
ATPases Associated with Diverse Cellular Activities , Carcinoma, Pancreatic Ductal , DNA Helicases , Pancreatic Neoplasms , Proto-Oncogene Proteins c-myc , Animals , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , ATPases Associated with Diverse Cellular Activities/metabolism , ATPases Associated with Diverse Cellular Activities/genetics , Mice , Humans , DNA Helicases/genetics , DNA Helicases/metabolism , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Cell Line, Tumor , Carrier Proteins/metabolism , Carrier Proteins/genetics
16.
Nat Chem Biol ; 20(9): 1164-1175, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38773330

ABSTRACT

The C-terminal to LisH (CTLH) complex is a ubiquitin ligase complex that recognizes substrates with Pro/N-degrons via its substrate receptor Glucose-Induced Degradation 4 (GID4), but its function and substrates in humans remain unclear. Here, we report PFI-7, a potent, selective and cell-active chemical probe that antagonizes Pro/N-degron binding to human GID4. Use of PFI-7 in proximity-dependent biotinylation and quantitative proteomics enabled the identification of GID4 interactors and GID4-regulated proteins. GID4 interactors are enriched for nucleolar proteins, including the Pro/N-degron-containing RNA helicases DDX21 and DDX50. We also identified a distinct subset of proteins whose cellular levels are regulated by GID4 including HMGCS1, a Pro/N-degron-containing metabolic enzyme. These data reveal human GID4 Pro/N-degron targets regulated through a combination of degradative and nondegradative functions. Going forward, PFI-7 will be a valuable research tool for investigating CTLH complex biology and facilitating development of targeted protein degradation strategies that highjack CTLH E3 ligase activity.


Subject(s)
Protein Binding , Humans , Proteolysis , HEK293 Cells , Molecular Probes/chemistry , Molecular Probes/metabolism , DEAD-box RNA Helicases/metabolism , Ubiquitin-Protein Ligases/metabolism , Degrons , Receptors, Interleukin-17
17.
J Biol Chem ; 300(7): 107407, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796065

ABSTRACT

Members of the casein kinase 1 (CK1) family are important regulators of multiple signaling pathways. CK1α is a well-known negative regulator of the Wnt/ß-catenin pathway, which promotes the degradation of ß-catenin via its phosphorylation of Ser45. In contrast, the closest paralog of CK1α, CK1α-like, is a poorly characterized kinase of unknown function. In this study, we show that the deletion of CK1α, but not CK1α-like, resulted in a strong activation of the Wnt/ß-catenin pathway. Wnt-3a treatment further enhanced the activation, which suggests there are at least two modes, a CK1α-dependent and Wnt-dependent, of ß-catenin regulation. Rescue experiments showed that only two out of ten naturally occurring splice CK1α/α-like variants were able to rescue the augmented Wnt/ß-catenin signaling caused by CK1α deficiency in cells. Importantly, the ability to phosphorylate ß-catenin on Ser45 in the in vitro kinase assay was required but not sufficient for such rescue. Our compound CK1α and GSK3α/ß KO models suggest that the additional nonredundant function of CK1α in the Wnt pathway beyond Ser45-ß-catenin phosphorylation includes Axin phosphorylation. Finally, we established NanoBRET assays for the three most common CK1α splice variants as well as CK1α-like. Target engagement data revealed comparable potency of known CK1α inhibitors for all CK1α variants but not for CK1α-like. In summary, our work brings important novel insights into the biology of CK1α, including evidence for the lack of redundancy with other CK1 kinases in the negative regulation of the Wnt/ß-catenin pathway at the level of ß-catenin and Axin.


Subject(s)
Casein Kinase Ialpha , Wnt Signaling Pathway , beta Catenin , Humans , Alternative Splicing , beta Catenin/metabolism , beta Catenin/genetics , Casein Kinase Ialpha/metabolism , Casein Kinase Ialpha/genetics , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Glycogen Synthase Kinase 3 beta/genetics , HEK293 Cells , Phosphorylation , Wnt3A Protein/metabolism , Wnt3A Protein/genetics
18.
J Med Chem ; 67(11): 8609-8629, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38780468

ABSTRACT

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.


Subject(s)
Protein Kinase Inhibitors , Protein Serine-Threonine Kinases , Pteridines , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/metabolism , Pteridines/pharmacology , Pteridines/chemistry , Pteridines/chemical synthesis , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Cell Proliferation/drug effects , Structure-Activity Relationship , Casein Kinase Idelta/antagonists & inhibitors , Casein Kinase Idelta/metabolism , Casein Kinase 1 epsilon/antagonists & inhibitors , Casein Kinase 1 epsilon/metabolism , Cell Line, Tumor
19.
Eur J Med Chem ; 271: 116391, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38669909

ABSTRACT

LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors. Homology models were first constructed to better understand the binding mode of our preliminary compounds and to explain differences in biological activity. A library of over 60 products was generated and in vitro enzymatic activities were measured in the mid to low nanomolar range. The most promising derivatives were then evaluated in cell on cofilin phosphorylation inhibition which led to the identification of 52 which showed excellent selectivity for LIMKs in a kinase selectivity panel. We also demonstrated that 52 affected the cell cytoskeleton by disturbing actin filaments. Cell migration studies with this derivative using three different cell lines displayed a significant effect on cell motility. Finally, the crystal structure of the kinase domain of LIMK2 complexed with 52 was solved, greatly improving our understanding of the interaction between 52 and LIMK2 active site. The reported data represent a basis for the development of more efficient LIMK inhibitors for future in vivo preclinical validation.


Subject(s)
Lim Kinases , Protein Kinase Inhibitors , Lim Kinases/antagonists & inhibitors , Lim Kinases/metabolism , Humans , Structure-Activity Relationship , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Molecular Structure , Cell Movement/drug effects , Models, Molecular , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Dose-Response Relationship, Drug , Pyrimidines/pharmacology , Pyrimidines/chemistry , Pyrimidines/chemical synthesis
20.
J Med Chem ; 67(8): 6549-6569, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38604131

ABSTRACT

Fibroblast growth factor receptor 4 (FGFR4) is thought to be a driver in several cancer types, most notably in hepatocellular carcinoma. One way to achieve high potency and isoform selectivity for FGFR4 is covalently targeting a rare cysteine (C552) in the hinge region of its kinase domain that is not present in other FGFR family members (FGFR1-3). Typically, this cysteine is addressed via classical acrylamide electrophiles. We demonstrate that noncanonical covalent "warheads" based on nucleophilic aromatic substitution (SNAr) chemistry can be employed in a rational manner to generate highly potent and (isoform-)selective FGFR4 inhibitors with a low intrinsic reactivity. Key compounds showed low to subnanomolar potency, efficient covalent inactivation kinetics, and excellent selectivity against the other FGFRs, the kinases with an equivalent cysteine, and a representative subset of the kinome. Moreover, these compounds achieved nanomolar potencies in cellular assays and demonstrated good microsomal stability, highlighting the potential of SNAr-based approaches in covalent inhibitor design.


Subject(s)
Protein Kinase Inhibitors , Receptor, Fibroblast Growth Factor, Type 4 , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Structure-Activity Relationship , Microsomes, Liver/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL