Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 13(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38498517

ABSTRACT

Melon pest management relies on the excessive application of pesticides. Reducing pesticide spraying has become a global issue for environmental sustainability and human health. Therefore, developing a new cropping system that is sustainable and eco-friendly is important. This study found that melon seedlings irrigated with ultrafine water containing H2 and O2 (UFW) produced more root hairs, increased shoot height, and produced more flowers than the control irrigated with reverse osmosis (RO) water. Surprisingly, we also discovered that UFW irrigation significantly reduced aphid infestation in melons. Based on cryo-scanning electron microscope (cryo-SEM) observations, UFW treatment enhanced trichome development and prevented aphid infestation. To investigate whether it was H2 or O2 that helped to deter insect infestation, we prepared UF water enrichment of H2 (UF+H2) and O2 (UF+O2) separately and irrigated melons. Cryo-SEM results indicated that both UF+H2 and UF+O2 can increase the density of trichomes in melon leaves and petioles. RT-qPCR showed that UF+H2 significantly increased the gene expression level of the trichome-related gene GLABRA2 (GL2). We planted melons in a plastic greenhouse and irrigated them with ultrafine water enrichment of hydrogen (UF+H2) and oxygen (UF+O2). The SPAD value, photosynthetic parameters, root weight, fruit weight, and fruit sweetness were all better than the control without ultrafine water irrigation. UFW significantly increased trichome development, enhanced insect resistance, and improved fruit traits. This system thus provides useful water management for pest control and sustainable agricultural production.

2.
J Exp Bot ; 74(8): 2556-2571, 2023 04 18.
Article in English | MEDLINE | ID: mdl-36656734

ABSTRACT

The pollen grains of Phalaenopsis orchids are clumped tightly together, packed in pollen dispersal units called pollinia. In this study, the morphology, cytology, biochemistry, and sucrose transporters in pollinia of Phalaenopsis orchids were investigated. Histochemical detection was used to characterize the distribution of sugars and callose at the different development stages of pollinia. Ultra-performance liquid chromatography-high resolution-tandem mass spectrometry data indicated that P. aphrodite accumulated abundant saccharides such as sucrose, galactinol, myo-inositol, and glucose, and trace amounts of raffinose and trehalose in mature pollinia. We found that galactinol synthase (PAXXG304680) and trehalose-6-phosphate phosphatase (PAXXG016120) genes were preferentially expressed in mature pollinia. The P. aphrodite genome was identified as having 11 sucrose transporters (SUTs). Our qRT-PCR confirmed that two SUTs (PAXXG030250 and PAXXG195390) were preferentially expressed in the pollinia. Pollinia germinated in pollen germination media (PGM) supplemented with 10% sucrose showed increased callose production and enhanced pollinia germination, but there was no callose or germination in PGM without sucrose. We show that P. aphrodite accumulates high levels of sugars in mature pollinia, providing nutrients and enhanced SUT gene expression for pollinia germination and tube growth.


Subject(s)
Orchidaceae , Sugars , Sugars/metabolism , Sucrose/metabolism , Orchidaceae/genetics , Orchidaceae/metabolism , Pollen/metabolism , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism
3.
Plants (Basel) ; 11(3)2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35161229

ABSTRACT

Sacha inchi (Plukenetia volubilis L.) is an important oilseed crop that is rich in fatty acids and protein. Climate-change-related stresses, such as chilling, high temperature, and waterlogging can cause severe production loss in this crop. In this study, we investigated the photosynthetic responses of sacha inchi seedlings to short-term waterlogging and their morphological changes after long-term waterlogging stress. Sacha inchi CO2 uptake, stomatal conductance, and transpiration rate are affected by temperature and light intensity. The seedlings had a high CO2 uptake (>10 µmol m-2s-1) during the daytime (08:00 to 15:00), and at 32 and 36 °C. At 32 °C, CO2 uptake peaked at irradiations of 1000 and 1500 µmol m-2s-1, and plants could still perform photosynthesis at high-intensity radiation of 2000-3000 µmol m-2s-1. However, after 5 days of waterlogging (5 DAF) sacha inchi seedlings significantly reduced their photosynthetic ability. The CO2 uptake, stomatal conductance, Fv/Fm, ETR, and qP, etc., of the susceptible genotypes, were significantly decreased and their wilting percentage was higher than 50% at 5 DAF. This led to a higher wilting percentage at 7 days post-recovery. Among the four lines assessed, Line 27 had a high photosynthetic capability and showed the best waterlogging tolerance. We screened many seedlings for long-term waterlogging tolerance and discovered that some seedlings can produce adventitious roots (AR) and survive after two weeks of waterlogging. Hence, AR could be a critical morphological adaptation to waterlogging in this crop. In summary, these results suggest that improvement in waterlogging tolerance has considerable potential for increasing the sustainable production of sacha inchi.

4.
J Exp Bot ; 72(13): 4888-4903, 2021 06 22.
Article in English | MEDLINE | ID: mdl-33940615

ABSTRACT

GIBBERELLIN MYB GENE (GAMYB), UNDEVELOPED TAPETUM1 (UDT1), TDR INTERACTING PROTEIN2 (TIP2/bHLH142), TAPETUM DEGENERATION RETARDATION (TDR), and ETERNAL TAPETUM 1/DELAYED TAPETUM DEGENERATION (EAT1/DTD) are important transcription factors that play a crucial role during pollen development in rice. This study demonstrates that bHLH142 acts downstream of UDT1 and GAMYB and works as a 'hub' in these two pollen pathways. We show that GAMYB modulates bHLH142 expression through specific binding to the MYB motif of the bHLH142 promoter during the early stage of pollen development, while TDR acts as a transcriptional repressor of the GAMYB modulation of bHLH142 by binding to the E-box close to the MYB motif on the promoter. Altered expression of these transcription factors highlights that a tight, precise, and coordinated regulation among them is essential for normal pollen development. Most notably, we show that the regulatory pathways of GAMYB and UDT1 rely on bHLH142 in a direct and indirect manner, respectively, and function in different tissues with distinct biological roles during pollen development. This study advances our understanding of the molecular mechanisms of rice pollen development.


Subject(s)
Oryza , Flowers/genetics , Flowers/metabolism , Gene Expression Regulation, Plant , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pollen/genetics , Pollen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Int J Mol Sci ; 21(21)2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33126662

ABSTRACT

Vanilla orchid, which is well-known for its flavor and fragrance, is cultivated in tropical and subtropical regions. This shade-loving plant is very sensitive to high irradiance. In this study, we show that vanilla chloroplasts started to have avoidance movement when blue light (BL) was higher than 20 µmol m-2s-1 and significant avoidance movement was observed under BL irradiation at 100 µmol m-2s-1 (BL100). The light response curve indicated that when vanilla was exposed to 1000 µmol m-2s-1, the electron transport rate (ETR) and photochemical quenching of fluorescence (qP) were significantly reduced to a negligible amount. We found that if a vanilla orchid was irradiated with BL100 for 12 days, it acquired BL-acclimation. Chloroplasts moved to the side of cells in order to reduce light-harvesting antenna size, and chloroplast photodamage was eliminated. Therefore, BL-acclimation enhanced vanilla orchid growth and tolerance to moderate (500 µmol m-2s-1) and high light (1000 µmol m-2s-1) stress conditions. It was found that under high irradiation, BL-acclimatized vanilla maintained higher ETR and qP capacity than the control without BL-acclimation. BL-acclimation induced antioxidant enzyme activities, reduced ROS accumulation, and accumulated more carbohydrates. Moreover, BL-acclimatized orchids upregulated photosystem-II-associated marker genes (D1 and PetC), Rubisco and PEPC transcripts and sustained expression levels thereof, and also maximized the photosynthesis rate. Consequently, BL-acclimatized orchids had higher biomass. In short, this study found that acclimating vanilla orchid with BL before transplantation to the field might eliminate photoinhibition and enhance vanilla growth and production.


Subject(s)
Chlorophyll/metabolism , Chloroplasts/metabolism , Etiolation , Light , Photosynthesis , Vanilla/growth & development , Chloroplasts/radiation effects , Fluorescence , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/radiation effects , Vanilla/metabolism , Vanilla/radiation effects
6.
Int J Mol Sci ; 21(17)2020 Aug 26.
Article in English | MEDLINE | ID: mdl-32859101

ABSTRACT

The moth orchid is an important ornamental crop. It is very sensitive to high light irradiation due to photoinhibition. In this study, young orchid tissue culture seedlings and 2.5" potted plants pretreated under blue light (BL, λmax = 450 nm) at 100 µmol m-2 s-1 for 12 days (BL acclimation) were found to have an increased tolerance to high light irradiation. After BL acclimation, orchids had an increased anthocyanin accumulation, enhanced chloroplast avoidance, and increased chlorophyll fluorescence capacity whenever they were exposed to high light of 1000 µmol m-2 s-1 for two weeks (HL). They had higher Fv/Fm, electron transport rate (ETR), chlorophyll content, catalase activity and sucrose content when compared to the control without BL acclimation. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that transcript levels of phototropins, D1, RbcS, PEPCK, Catalase and SUT2 were upregulated in the BL-acclimated orchids. Consequently, BL acclimation orchids had better growth when compared to the control under long-term high light stress. In summary, this study provides a solution, i.e., BL acclimation, to reduce moth orchid photoinhibition and enhance growth before transplantation of the young tissue culture seedlings and potted plants into greenhouses, where they usually suffer from a high light fluctuation problem.


Subject(s)
Light/adverse effects , Orchidaceae/physiology , Photosynthesis/radiation effects , Plant Proteins/genetics , Acclimatization/radiation effects , Animals , Anthocyanins/metabolism , Catalase/genetics , Chlorophyll/metabolism , Chloroplasts/metabolism , Electron Transport/radiation effects , Gene Expression Regulation, Plant/radiation effects , Orchidaceae/radiation effects , Reactive Oxygen Species/metabolism , Sucrose/metabolism
7.
Plant Physiol ; 182(1): 393-407, 2020 01.
Article in English | MEDLINE | ID: mdl-31659125

ABSTRACT

Rice (Oryza sativa) OsNLA1 has been proposed to play a crucial role in regulating phosphate (Pi) acquisition in roots, similar to that of Arabidopsis (Arabidopsis thaliana) AtNLA. However, unlike AtNLA, OsNLA1 is not a target of miR827, a Pi starvation-induced microRNA. It is, therefore, of interest to know whether the expression of OsNLA1 depends on Pi supply and how it is regulated. In this study, we provide evidence that OsNLA1 controls Pi acquisition by directing the degradation of several OsPHT1 Pi transporters (i.e. OsPT1/2/4/7/8/12). We further show that OsNLA1 has an additional function in reproduction and uncover the mechanism of its expression regulation. Analysis of mRNA levels, promoter-GUS activity, and protoplast transient expression showed that the expression of OsNLA1.1, the most abundant transcript variant, is up-regulated in response to increasing Pi supply. The OsNLA1 promoter region was found to contain an upstream open reading frame that is required for Pi-responsive expression regulation. OsNLA1 promoter activity was observed in roots, ligules, leaves, sheaths, pollen grains, and surrounding the vascular tissues of anthers, suggesting that OsNLA1 is important throughout the development of rice. Disruption of OsNLA1 resulted in increased Pi uptake from roots as well as impaired pollen development and reduced grain production. In summary, our study reveals that Pi-induced OsNLA1 expression regulated by a unique mechanism functions in Pi acquisition, Pi translocation, and reproductive success.


Subject(s)
Arabidopsis/metabolism , Open Reading Frames/genetics , Oryza/metabolism , Phosphates/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Biological Transport , Gene Expression Regulation, Plant/genetics , Oryza/genetics , Plant Proteins/genetics , Promoter Regions, Genetic/genetics
8.
Int J Mol Sci ; 20(21)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671600

ABSTRACT

Double-spikes Phalaenopsis orchids have greater market value than those with single-spike. In this study, a gene designated as Spike Activator 1 (SPK1), which encodes a basic helix-loop-helix (bHLH) transcription factor, was isolated and characterized from Phalaenopsis aphrodite (moth orchid). SPK1 was highly expressed in the meristematic tissues. In the axillary bud, SPK1 was highly upregulated by a moderately low temperature of 20 °C but downregulated by a spike inhibition temperature of 30 °C. SPK1 protein is localized in the nucleus. Another bHLH, bHLH35, which is also highly expressed in young tissues in the same way as SPK1 was also identified. In contrast to SPK1, bHLH35 transcripts are downregulated at 20 °C but upregulated at 30 °C. Bimolecular florescence complementation assay and yeast two-hybrid assays indicated that SPK1 interacts with bHLH35 and forms a heterodimer. Virus-induced gene silencing (VIGS) showed that 7 out of 15 vector control plants produced double spikes but that only 1 out of 15 VIGS-spk1 plants produced double spikes. RT-qPCR results indicated that VIGS-spk1 downregulated gene expression levels of SPK1, FT, CYCB, and EXPA8. Overall, we propose that SPK1 plays an essential role in early axillary bud development and spike initiation of P. aphrodite.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Nucleus/metabolism , Orchidaceae/growth & development , Basic Helix-Loop-Helix Transcription Factors/chemistry , Cloning, Molecular , Cold Temperature , Gene Expression Profiling , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Hot Temperature , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Orchidaceae/genetics , Orchidaceae/metabolism , Plant Proteins/chemistry , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Multimerization , Transcriptional Activation
9.
Plant Biotechnol (Tokyo) ; 36(3): 181-185, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31768120

ABSTRACT

Hybrid Oncidium orchids, such as Oncidium Gower Ramsey and Oncidium "Honey Angel," are popular cut flowers in Japan and Taiwan. Due to pollen sterility, no new varieties have been created by conventional breeding methods. Recently, we employed RNA interference (RNAi) technology to suppress phytoene synthase and successfully modified floret hue from yellow to white (Liu et al. 2019). Transgenic white Oncidium orchids, Honey Snow MF-1, have been grown to test their genetic stability, and their environmental biosafety was assessed for approximately one year under government regulatory instructions from the Council of Agriculture, Taiwan. In the present study, pollen sterility was demonstrated by cytological observation of the microsporogenesis step, pollen morphology abortion, and failure of pollen germination. Assays on allelopathic effect on the other plants and the soil rhizospheric microbial flora-revealed that transgenic Oncidium orchids are potentially safe with regard to environmental biodiversity. Therefore, the general release permissions have been granted and an application for licensing for commercial production is under way.

10.
Plant Cell Physiol ; 60(10): 2243-2254, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31198960

ABSTRACT

Chloroplast movement is important for plants to avoid photodamage and to perform efficient photosynthesis. Phototropins are blue light receptors in plants that function in chloroplast movement, phototropism, stomatal opening, and they also affect plant growth and development. In this study, full-length cDNAs of two PHOTOTROPIN genes, PaPHOT1 and PaPHOT2, were cloned from a moth orchid Phalaenopsis aphrodite, and their functions in chloroplast movement were investigated. Phylogenetic analysis showed that PaPHOT1 and PaPHOT2 orthologs were highly similar to PHOT1 and PHOT2 of the close relative Phalaenopsis equestris, respectively, and clustered with monocots PHOT1 and PHOT2 orthologs, respectively. Phalaenopsis aphrodite expressed a moderate level of PaPHOT1 under low blue light of 5 µmol�m-2�s-1 (BL5) and a high levels of PaPHOT1 at >BL100. However, PaPHOT2 was expressed at low levels at BL100. Analysis of light-induced chloroplast movements using the SPAD method indicated that orchid accumulated chloroplasts at BL25 and significant chloroplast avoidance movement was observed at >BL100. Virus-induced gene silencing of PaPHOTs in orchids showed decreased gene expression of PaPHOTs and reduced both chloroplast accumulation and avoidance responses. Heterologous expression of PaPHOT1 in Arabidopsis phot1phot2 double mutant recovered chloroplast accumulation response at BL5, but neither PaPHOT1 nor PaPHOT2 was able to restore mutant chloroplast avoidance at BL100. Overall, this study showed that phototropins mediate chloroplast movement in Phalaenopsis orchid is blue light-dependent but their function is slightly different from Arabidopsis which might be due to gene evolution.


Subject(s)
Orchidaceae/physiology , Phototropins/metabolism , Phototropism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Chloroplasts/metabolism , Chloroplasts/radiation effects , DNA, Complementary/genetics , Gene Expression , Gene Silencing , In Situ Hybridization , Light , Mutation , Orchidaceae/genetics , Orchidaceae/radiation effects , Photosynthesis , Phototropins/genetics , Phylogeny , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
12.
Front Plant Sci ; 8: 1258, 2017.
Article in English | MEDLINE | ID: mdl-28769961

ABSTRACT

Male sterility is important for hybrid seed production. Pollen development is regulated by a complex network. We previously showed that knockout of bHLH142 in rice (Oryza sativa) causes pollen sterility by interrupting tapetal programmed cell death (PCD) and bHLH142 coordinates with TDR to modulate the expression of EAT1. In this study, we demonstrated that overexpression of bHLH142 (OE142) under the control of the ubiquitin promoter also leads to male sterility in rice by triggering the premature onset of PCD. Protein of bHLH142 was found to accumulate specifically in the OE142 anthers. Overexpression of bHLH142 induced early expression of several key regulatory transcription factors in pollen development. In particular, the upregulation of EAT1 at the early stage of pollen development promoted premature PCD in the OE142 anthers, while its downregulation at the late stage impaired pollen development by suppressing genes involved in pollen wall biosynthesis, ROS scavenging and PCD. Collectively, these events led to male sterility in OE142. Analyses of related mutants further revealed the hierarchy of the pollen development regulatory gene network. Thus, the findings of this study advance our understanding of the central role played by bHLH142 in the regulatory network leading to pollen development in rice and how overexpression of its expression affects pollen development. Exploitation of this novel functionality of bHLH142 may confer a big advantage to hybrid seed production.

13.
J Vis Exp ; (117)2016 11 23.
Article in English | MEDLINE | ID: mdl-27911377

ABSTRACT

Maintaining plant section integrity is essential for studying detailed anatomical structures at the cellular, tissue, or even organ level. However, some plant cells have rigid cell walls, tough fibers and crystals (calcium oxalate, silica, etc.), and high water content that often disrupt tissue integrity during plant tissue sectioning. This study establishes a simple Hybrid-Cut tissue sectioning method. This protocol modifies a paraffin-based sectioning technique and improves the integrity of tissue sections from different plants. Plant tissues were embedded in paraffin before sectioning in a cryostat at -16 °C. Sectioning under low temperature hardened the paraffin blocks, reduced tearing and scratching, and improved tissue integrity significantly. This protocol was successfully applied to calcium oxalate-rich Phalaenopsis orchid tissues as well as recalcitrant tissues such as reproductive organs and leaves of rice, maize, and wheat. In addition, the high quality of tissue sections from Hybrid-Cut could be used in combination with in situ hybridization (ISH) to provide spatial expression patterns of genes of interest. In conclusion, this protocol is particularly useful for recalcitrant plant tissue containing high crystal or silica content. Good quality tissue sections enable morphological and other biological studies.


Subject(s)
Plants , Specimen Handling , In Situ Hybridization
14.
Bot Stud ; 57(1): 30, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28597440

ABSTRACT

BACKGROUND: Phalaenopsis orchid (Phal. orchid) is visually attractive and it is important economic floriculture species. Phal. orchids have many unique biological features. However, investigation of these features and validation on their biological functions are limited due to the lack of an efficient transformation method. RESULTS: We developed a heritable and efficient Agrobacterium- mediated transformation using protocorms derived from tetraploid or diploid Phal. orchids. A T-DNA vector construct containing eGFP driven by ubiquitin promoter was subjected to transformation. An approximate 1.2-5.2 % transformation rate was achieved. Genomic PCR confirmed that hygromycin selection marker, HptII gene and target gene eGFP were integrated into the orchid genome. Southern blotting indicated a low T-DNA insertion number in the orchid genome of the transformants. Western blot confirmed the expression of eGFP protein in the transgenic orchids. Furthermore, the GFP signal was detected in the transgenic orchids under microscopy. After backcrossing the pollinia of the transgenic plants to four different Phal. orchid varieties, the BC1 progenies showed hygromycin resistance and all surviving BC1 seedlings were HptII positive in PCR and expressed GFP protein as shown by western blot. CONCLUSIONS: This study demonstrated a stable transformation system was generated for Phal. orchids. This useful transformation protocol enables functional genomics studies and molecular breeding.

15.
Plant Biotechnol J ; 14(1): 284-98, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25917508

ABSTRACT

Orchids exhibit a range of unique flower shapes and are a valuable ornamental crop. MADS-box transcription factors are key regulatory components in flower initiation and development. Changing the flower shape and flowering time can increase the value of the orchid in the ornamental horticulture industry. In this study, 28 MADS-box genes were identified from the transcriptome database of the model orchid Erycina pusilla. The full-length genomic sequences of these MADS-box genes were obtained from BAC clones. Of these, 27 were MIKC-type EpMADS (two truncated forms) and one was a type I EpMADS. Eleven EpMADS genes contained introns longer than 10 kb. Phylogenetic analysis classified the 24 MIKC(c) genes into nine subfamilies. Three specific protein motifs, AG, FUL and SVP, were identified and used to classify three subfamilies. The expression profile of each EpMADS gene correlated with its putative function. The phylogenetic analysis was highly correlated with the protein domain identification and gene expression results. Spatial expression of EpMADS6, EpMADS12 and EpMADS15 was strongly detected in the inflorescence meristem, floral bud and seed via in situ hybridization. The subcellular localization of the 28 EpMADS proteins was also investigated. Although EpMADS27 lacks a complete MADS-box domain, EpMADS27-YFP was localized in the nucleus. This characterization of the orchid MADS-box family genes provides useful information for both orchid breeding and studies of flowering and evolution.


Subject(s)
Gene Expression Profiling , MADS Domain Proteins/genetics , Multigene Family , Orchidaceae/genetics , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis/genetics , Databases, Genetic , Exons/genetics , Flowers/genetics , Gene Expression Regulation, Plant , Genes, Plant , Introns/genetics , MADS Domain Proteins/chemistry , MADS Domain Proteins/metabolism , Nucleotide Motifs , Organ Specificity/genetics , Phylogeny , Protein Domains , Subcellular Fractions/metabolism
16.
BMC Plant Biol ; 14: 179, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-24989161

ABSTRACT

BACKGROUND: The bamboo Bambusa edulis has a long juvenile phase in situ, but can be induced to flower during in vitro tissue culture, providing a readily available source of material for studies on reproductive biology and flowering. In this report, in vitro-derived reproductive and vegetative materials of B. edulis were harvested and used to generate transcriptome databases by use of two sequencing platforms: Illumina and 454. Combination of the two datasets resulted in high transcriptome quality and increased length of the sequence reads. In plants, many MADS genes control flower development, and the ABCDE model has been developed to explain how the genes function together to create the different whorls within a flower. RESULTS: As a case study, published floral development-related OsMADS proteins from rice were used to search the B. edulis transcriptome datasets, identifying 16 B. edulis MADS (BeMADS). The BeMADS gene expression levels were determined qRT-PCR and in situ hybridization. Most BeMADS genes were highly expressed in flowers, with the exception of BeMADS34. The expression patterns of these genes were most similar to the rice homologs, except BeMADS18 and BeMADS34, and were highly similar to the floral development ABCDE model in rice. Transient expression of MADS-GFP proteins showed that only BeMADS1 entered leaf nucleus. BeMADS18, BeMADS4, and BeMADS1 were located in the lemma nucleus. When co-transformed with BeMADS1, BeMADS15, 16, 13, 21, 6, and 7 translocated to nucleus in lemmas, indicating that BeMADS1 is a key factor for subcellular localization of other BeMADS. CONCLUSION: Our study provides abundant B. edulis transcriptome data and offers comprehensive sequence resources. The results, molecular materials and overall strategy reported here can be used for future gene identification and for further reproductive studies in the economically important crop of bamboo.


Subject(s)
Bambusa/growth & development , Bambusa/genetics , Cell Nucleus/metabolism , Flowers/growth & development , Genes, Plant , MADS Domain Proteins/genetics , Transcriptome/genetics , Databases, Genetic , Evolution, Molecular , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Gene Ontology , MADS Domain Proteins/metabolism , Metabolic Networks and Pathways/genetics , Molecular Sequence Annotation , Oryza/genetics , Phylogeny , Plant Leaves/metabolism , Protein Transport , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombinant Fusion Proteins/metabolism , Reproduction/genetics , Sequence Analysis, RNA , Subcellular Fractions/metabolism , Transformation, Genetic
17.
Plant Cell ; 26(6): 2486-2504, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24894043

ABSTRACT

Male sterility plays an important role in F1 hybrid seed production. We identified a male-sterile rice (Oryza sativa) mutant with impaired pollen development and a single T-DNA insertion in the transcription factor gene bHLH142. Knockout mutants of bHLH142 exhibited retarded meiosis and defects in tapetal programmed cell death. RT-PCR and in situ hybridization analyses showed that bHLH142 is specifically expressed in the anther, in the tapetum, and in meiocytes during early meiosis. Three basic helix-loop-helix transcription factors, UDT1 (bHLH164), TDR1 (bHLH5), and EAT1/DTD1 (bHLH141) are known to function in rice pollen development. bHLH142 acts downstream of UDT1 and GAMYB but upstream of TDR1 and EAT1 in pollen development. In vivo and in vitro assays demonstrated that bHLH142 and TDR1 proteins interact. Transient promoter assays demonstrated that regulation of the EAT1 promoter requires bHLH142 and TDR1. Consistent with these results, 3D protein structure modeling predicted that bHLH142 and TDR1 form a heterodimer to bind to the EAT1 promoter. EAT1 positively regulates the expression of AP37 and AP25, which induce tapetal programmed cell death. Thus, in this study, we identified bHLH142 as having a pivotal role in tapetal programmed cell death and pollen development.

18.
Plant Physiol ; 164(4): 2045-53, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24520156

ABSTRACT

Heat stress is an important factor that has a negative impact on rice (Oryza sativa) production. To alleviate this problem, it is necessary to extensively understand the genetic basis of heat tolerance and adaptability to heat stress in rice. Here, we report the molecular mechanism underlying heat acclimation memory that confers long-term acquired thermotolerance (LAT) in this monocot plant. Our results showed that a positive feedback loop formed by two heat-inducible genes, HEAT SHOCK PROTEIN101 (HSP101) and HEAT STRESS-ASSOCIATED 32-KD PROTEIN (HSA32), at the posttranscriptional level prolongs the effect of heat acclimation in rice seedlings. The interplay between HSP101 and HSA32 also affects basal thermotolerance of rice seeds. These findings are similar to those reported for the dicot plant Arabidopsis (Arabidopsis thaliana), suggesting a conserved function in plant heat stress response. Comparison between two rice cultivars, japonica Nipponbare and indica N22 showed opposite performance in basal thermotolerance and LAT assays. 'N22' seedlings have a higher basal thermotolerance level than cv Nipponbare and vice versa at the LAT level, indicating that these two types of thermotolerance can be decoupled. The HSP101 and HSA32 protein levels were substantially higher in cv Nipponbare than in cv N22 after a long recovery following heat acclimation treatment, at least partly explaining the difference in the LAT phenotype. Our results point out the complexity of thermotolerance diversity in rice cultivars, which may need to be taken into consideration when breeding for heat tolerance for different climate scenarios.


Subject(s)
Adaptation, Physiological , Feedback, Physiological , Heat-Shock Proteins/metabolism , Heat-Shock Response , Oryza/physiology , Plant Proteins/metabolism , Adaptation, Physiological/genetics , Gene Expression Regulation, Plant , Gene Knockout Techniques , Germination , Heat-Shock Proteins/genetics , Homozygote , Mutagenesis, Insertional/genetics , Oryza/genetics , Phenotype , Plant Proteins/genetics , Proteolysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Seedlings/physiology , Temperature , Time Factors
19.
Plant Mol Biol ; 84(1-2): 203-26, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24222213

ABSTRACT

Orchidaceae is one of the most abundant and diverse families in the plant kingdom and its unique developmental patterns have drawn the attention of many evolutionary biologists. Particular areas of interest have included the co-evolution of pollinators and distinct floral structures, and symbiotic relationships with mycorrhizal flora. However, comprehensive studies to decipher the molecular basis of growth and development in orchids remain scarce. Cell proliferation governed by cell-cycle regulation is fundamental to growth and development of the plant body. We took advantage of recently released transcriptome information to systematically isolate and annotate the core cell-cycle regulators in the moth orchid Phalaenopsis aphrodite. Our data verified that Phalaenopsis cyclin-dependent kinase A (CDKA) is an evolutionarily conserved CDK. Expression profiling studies suggested that core cell-cycle genes functioning during the G1/S, S, and G2/M stages were preferentially enriched in the meristematic tissues that have high proliferation activity. In addition, subcellular localization and pairwise interaction analyses of various combinations of CDKs and cyclins, and of E2 promoter-binding factors and dimerization partners confirmed interactions of the functional units. Furthermore, our data showed that expression of the core cell-cycle genes was coordinately regulated during pollination-induced reproductive development. The data obtained establish a fundamental framework for study of the cell-cycle machinery in Phalaenopsis orchids.


Subject(s)
Cell Cycle Proteins/metabolism , Gene Expression Regulation, Plant/physiology , Genome, Plant/physiology , Orchidaceae/metabolism , Plant Proteins/metabolism , Transcriptome , Amino Acid Sequence , Cell Cycle Proteins/genetics , Molecular Sequence Data , Multigene Family , Orchidaceae/chemistry , Phylogeny , Plant Proteins/genetics
20.
Plant Cell Physiol ; 51(12): 2119-31, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21062869

ABSTRACT

Here we report on the characterization of rice osa-miR827 and its two target genes, OsSPX-MFS1 and OsSPX-MFS2, which encode SPX-MFS proteins predicted to be implicated in phosphate (Pi) sensing or transport. We first show by Northern blot analysis that osa-miR827 is strongly induced by Pi starvation in both shoots and roots. Hybridization of osa-miR827 in situ confirms its strong induction by Pi starvation, with signals concentrated in mesophyll, epidermis and ground tissues of roots. In parallel, we analyzed the responses of the two OsSPX-MFS1 and OsSPX-MFS2 gene targets to Pi starvation. OsSPX-MFS1 mRNA is mainly expressed in shoots under sufficient Pi supply while its expression is reduced on Pi starvation, revealing a direct relationship between induction of osa-miR827 and down-regulation of OsSPX-MFS1. In contrast, OsSPX-MFS2 responds in a diametrically opposed manner to Pi starvation. The accumulation of OsSPX-MFS2 mRNA is dramatically enhanced under Pi starvation, suggesting the involvement of complex regulation of osa-miR827 and its two target genes. We further produced transgenic rice lines overexpressing osa-miR827 and T-DNA knockout mutant lines in which the expression of osa-miR827 is abolished. Compared with wild-type controls, both target mRNAs exhibit similar changes, their expression being reduced and increased in overexpressing and knockout lines, respectively. This suggests that OsSPX-MFS1 and OsSPX-MFS2 are both negatively regulated by osa-miR827 abundance although they respond differently to external Pi conditions. We propose that this is a complex mechanism comprising fine tuning of spatial or temporal regulation of both targets by osa-miR827.


Subject(s)
Gene Expression Regulation, Plant , MicroRNAs/physiology , Oryza/genetics , Phosphates/deficiency , RNA, Plant/genetics , Adaptation, Physiological , DNA, Bacterial , Genes, Plant , Oryza/cytology , Oryza/metabolism , Phosphates/metabolism , Plant Roots/genetics , Plant Shoots/genetics , Plants, Genetically Modified/cytology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA Transport , RNA, Messenger/genetics , Sequence Deletion , Stress, Physiological , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL