Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 47(24): 14024-33, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24219299

ABSTRACT

Two passive air sampler (PAS) media were characterized under field conditions for the measurement of per- and polyfluoroalkyl substances (PFASs) in the atmosphere. The PASs, consisting of polyurethane foam (PUF) and sorbent-impregnated PUF (SIP) disks, were deployed for over one year in parallel with high volume active air samplers (HV-AAS) and low volume active air samplers (LV-AAS). Samples were analyzed for perfluoroalkyl carboxylic acids (PFCAs), perfluoroalkane sulfonic acids (PFSAs), fluorotelomer alcohols (FTOHs), fluorotelomer methacrylates (FTMACs), fluorotelomer acrylates (FTACs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs). Sampling rates and the passive sampler medium (PSM)-air partition coefficient (KPSM-A) were calculated for individual PFASs. Sampling rates were similar for PFASs present in the gas phase and particle phase, and the linear sampling rate of 4 m(-3) d(-1) is recommended for calculating effective air sample volumes in the SIP-PAS and PUF-PAS for PFASs except for the FOSAs and FOSEs in the PUF-PAS. SIP disks showed very good performance for all tested PFASs while PUF disks were suitable only for the PFSAs and their precursors. Experiments evaluating the suitability of different isotopically labeled fluorinated depuration compounds (DCs) revealed that (13)C8-perfluorooctanoic acid (PFOA) was suitable for the calculation of site-specific sampling rates. Ambient temperature was the dominant factor influencing the seasonal trend of PFASs.


Subject(s)
Air Pollutants/analysis , Air/analysis , Environmental Monitoring/instrumentation , Fluorocarbons/analysis , Calibration , Gases/analysis , Halogenation , Polyurethanes/chemistry , Seasons
2.
Environ Sci Technol ; 46(1): 391-6, 2012 Jan 03.
Article in English | MEDLINE | ID: mdl-22103600

ABSTRACT

As part of continued efforts under the Global Atmospheric Passive Sampling (GAPS) Network to develop passive air samplers applicable to a wide-range of compounds, sorbent-impregnated polyurethane foam (SIP) disk samplers were codeployed and tested against conventional polyurethane foam (PUF) disk samplers. The SIP disk sampler has a higher sorptive capacity compared to the PUF disk sampler, due to its impregnation with ground XAD resin. The two sampler types were codeployed at 20 sites during the 2009, 3-month long spring sampling period of the GAPS Network. Air concentrations for chlordanes (trans-chlordane, cis-chlordane, and trans-nonachlor) and endosulfans (endosulfan I, endosulfan II, and endosulfan sulfate) derived from PUF disk and SIP disk samplers showed near 1:1 agreement and confirmed previous results for polychlorinated biphenyls (PCBs). Discrepancies observed for α-HCH and γ-HCH in PUF disk versus SIP disk are attributed to lack of "comparability" of the PUF and SIP data sets, due to differences in effective air sampled by the two devices caused by saturation of these higher volatility compounds in the lower capacity PUF disk samplers. Analysis of PBDEs in PUF and SIP disks showed relatively good agreement but highlighted challenges associated with high blanks levels for PBDEs. The higher capacity SIP disk samplers allowed for the analysis of pentachlorobenzene (PeCBz) and hexachlorobenzene (HCBz) and revealed a relatively uniform global distribution of these compounds. The results of this study further validate the SIP disk sampler as a complement to the PUF disk sampler, with capabilities for a broad range of POPs targeted under international POPs treaties such as the Stockholm Convention on POPs and its Global Monitoring Plan.


Subject(s)
Environmental Monitoring/instrumentation , Environmental Monitoring/methods , Halogenated Diphenyl Ethers/analysis , Hydrocarbons, Chlorinated/analysis , Internationality , Pesticides/analysis , Polyurethanes/chemistry , Chlordan/analysis , Chlorobenzenes/analysis , Endosulfan/analysis , Geography , Hexachlorocyclohexane/analysis , Quality Control , Regression Analysis
3.
Environ Sci Technol ; 44(1): 362-7, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19954176

ABSTRACT

Sampling rates (Rs) for silicone rubber (SR) passive samplers were measured under two different hydrodynamic conditions. Concentrations were maintained in the aqueous phase by continuous equilibration with SR sheets of a large total surface area which had been spiked with polycyclic aromatic hydrocarbons and/or polychlorinated biphenyls. Test sheets made of the same SR but of much smaller surface area were used to measure the uptake rate. Measured Rs values decreased with increasing passive sampler-water partition coefficient (Kpw) according to Rs approximately Kpw(-0.08) under both hydrodynamic conditions. This decrease is not significantly different from modeled values if the uncertainty of the diffusion coefficients in water is included. Modeling also confirmed that uptake of the test compounds under the experimental conditions was entirely controlled by diffusion in the water phase. A model using Rs approximately M(-0.47) is suggested for extrapolation of Rs estimated from the dissipation of performance reference compounds to target compounds in a higher hydrophobicity range.


Subject(s)
Models, Theoretical , Silicone Elastomers , Calibration , Gas Chromatography-Mass Spectrometry , Polycyclic Compounds/analysis , Quality Control
4.
Environ Sci Technol ; 43(10): 3588-95, 2009 May 15.
Article in English | MEDLINE | ID: mdl-19544859

ABSTRACT

A volatilization chamber, designed for direct measurements of the soil-air exchange of persistent organic pollutants (POPs) was applied for determination of the volatilization fluxes of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs). The volatilization fluxes were determined for 13 model compounds at 3-5 concentration levels, for two soil organic carbon contents, and two wind velocities. The flux values were strongly correlated with physicochemical properties of the compounds. The higher fluxes were measured for soils with lower organic carbon contents, for higher contamination, and higher wind velocities. Experimentally derived values were compared to those predicted by the fugacity model. In general, the fugacity model underestimated the volatilization fluxes, especially for the compounds with higher molecular weights, and soils with higher organic carbon contents. It has been demonstrated that variability of the wind velocities as an important parameter for quantification of the soil-air exchange should be better considered in current models. Presented results draw the attention to often overlooked secondary sources of the atmospheric pollution and point out that their impact can be much greater than indicated by the fugacity models.


Subject(s)
Pesticides/analysis , Polychlorinated Biphenyls/analysis , Soil Pollutants/analysis , Soil/analysis , Models, Chemical , Risk Factors , Temperature , Time Factors , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...