Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(6): 114244, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38796851

ABSTRACT

Neurons in the primary cortex carry sensory- and behavior-related information, but it remains an open question how this information emerges and intersects together during learning. Current evidence points to two possible learning-related changes: sensory information increases in the primary cortex or sensory information remains stable, but its readout efficiency in association cortices increases. We investigated this question by imaging neuronal activity in mouse primary somatosensory cortex before, during, and after learning of an object localization task. We quantified sensory- and behavior-related information and estimated how much sensory information was used to instruct perceptual choices as learning progressed. We find that sensory information increases from the start of training, while choice information is mostly present in the later stages of learning. Additionally, the readout of sensory information becomes more efficient with learning as early as in the primary sensory cortex. Together, our results highlight the importance of primary cortical neurons in perceptual learning.


Subject(s)
Learning , Neurons , Somatosensory Cortex , Animals , Somatosensory Cortex/physiology , Learning/physiology , Mice , Neurons/physiology , Male , Mice, Inbred C57BL , Behavior, Animal/physiology , Female
2.
Curr Biol ; 34(2): 434-443.e4, 2024 01 22.
Article in English | MEDLINE | ID: mdl-38157861

ABSTRACT

Memory deficits in Alzheimer's disease (AD) show a strong link with GABAergic interneuron dysfunctions.1,2,3,4,5,6,7 The ensemble dynamics of GABAergic interneurons represent memory encoding and retrieval,8,9,10,11,12 but how GABAergic interneuron dysfunction affects inhibitory ensemble dynamics in AD is unknown. As the retrosplenial cortex (RSC) is critical for episodic memory13,14,15,16 and is affected by ß-amyloid accumulation in early AD,17,18,19,20,21 we address this question by performing Ca2+ imaging in RSC parvalbumin (PV)-expressing interneurons during a contextual fear memory task in healthy control mice and the 5XFAD mouse model of AD. We found that populations of PV interneurons responsive to aversive electric foot shocks during contextual fear conditioning (shock-responsive) significantly decreased in the 5XFAD mice, indicating dysfunctions in the recruitment of memory-encoding PV interneurons. In the control mice, ensemble activities of shock-responsive PV interneurons were selectively upregulated during the freezing epoch of the contextual fear memory retrieval, manifested by synaptic potentiation of PV interneuron-mediated inhibition. However, such changes in ensemble dynamics during memory retrieval and synaptic plasticity were both absent in the 5XFAD mice. Optogenetic silencing of PV interneurons during contextual fear conditioning in the control mice mimicked the memory deficits in the 5XFAD mice, while optogenetic activation of PV interneurons in the 5XFAD mice restored memory retrieval. These results demonstrate the critical roles of contextual fear memory-encoding PV interneurons for memory retrieval. Furthermore, synaptic dysfunction of PV interneurons may disrupt the recruitment of PV interneurons and their ensemble dynamics underlying contextual fear memory retrieval, subsequently leading to memory deficits in AD.


Subject(s)
Alzheimer Disease , Mice , Animals , Parvalbumins , Memory/physiology , Memory Disorders , Interneurons/physiology , Mice, Transgenic
3.
Elife ; 112022 01 19.
Article in English | MEDLINE | ID: mdl-35043782

ABSTRACT

Laboratory behavioural tasks are an essential research tool. As questions asked of behaviour and brain activity become more sophisticated, the ability to specify and run richly structured tasks becomes more important. An increasing focus on reproducibility also necessitates accurate communication of task logic to other researchers. To these ends, we developed pyControl, a system of open-source hardware and software for controlling behavioural experiments comprising a simple yet flexible Python-based syntax for specifying tasks as extended state machines, hardware modules for building behavioural setups, and a graphical user interface designed for efficiently running high-throughput experiments on many setups in parallel, all with extensive online documentation. These tools make it quicker, easier, and cheaper to implement rich behavioural tasks at scale. As important, pyControl facilitates communication and reproducibility of behavioural experiments through a highly readable task definition syntax and self-documenting features. Here, we outline the system's design and rationale, present validation experiments characterising system performance, and demonstrate example applications in freely moving and head-fixed mouse behaviour.


Subject(s)
Behavioral Sciences/methods , Animals , Computers , Mice , Reproducibility of Results , Software
4.
Cereb Cortex ; 32(12): 2538-2554, 2022 06 07.
Article in English | MEDLINE | ID: mdl-34613375

ABSTRACT

Mammalian neocortex is important for conscious processing of sensory information with balanced glutamatergic and GABAergic signaling fundamental to this function. Yet little is known about how this interaction arises despite increasing insight into early GABAergic interneuron (IN) circuits. To study this, we assessed the contribution of specific INs to the development of sensory processing in the mouse whisker barrel cortex, specifically the role of INs in early speed coding and sensory adaptation. In wild-type animals, both speed processing and adaptation were present as early as the layer 4 critical period of plasticity and showed refinement over the period leading to active whisking onset. To test the contribution of IN subtypes, we conditionally silenced action-potential-dependent GABA release in either somatostatin (SST) or vasoactive intestinal peptide (VIP) INs. These genetic manipulations influenced both spontaneous and sensory-evoked cortical activity in an age- and layer-dependent manner. Silencing SST + INs reduced early spontaneous activity and abolished facilitation in sensory adaptation observed in control pups. In contrast, VIP + IN silencing had an effect towards the onset of active whisking. Silencing either IN subtype had no effect on speed coding. Our results show that these IN subtypes contribute to early sensory processing over the first few postnatal weeks.


Subject(s)
Somatosensory Cortex , Vibrissae , Animals , Interneurons/physiology , Mammals/metabolism , Mice , Perception , Somatosensory Cortex/physiology , Vasoactive Intestinal Peptide/metabolism , Vibrissae/physiology
5.
Commun Biol ; 4(1): 935, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354206

ABSTRACT

Neurons can carry information with both the synchrony and rate of their spikes. However, it is unknown whether distinct subtypes of neurons are more sensitive to information carried by synchrony versus rate, or vice versa. Here, we address this question using patterned optical stimulation in slices of somatosensory cortex from mouse lines labelling fast-spiking (FS) and regular-spiking (RS) interneurons. We used optical stimulation in layer 2/3 to encode a 1-bit signal using either the synchrony or rate of activity. We then examined the mutual information between this signal and the interneuron responses. We found that for a synchrony encoding, FS interneurons carried more information in the first five milliseconds, while both interneuron subtypes carried more information than excitatory neurons in later responses. For a rate encoding, we found that RS interneurons carried more information after several milliseconds. These data demonstrate that distinct interneuron subtypes in the neocortex have distinct sensitivities to synchrony versus rate codes.


Subject(s)
Interneurons/physiology , Neocortex/physiology , Somatosensory Cortex/physiology , Animals , Mice , Mice, Transgenic , Optogenetics , Patch-Clamp Techniques
6.
Sci Adv ; 6(17): eaay5333, 2020 04.
Article in English | MEDLINE | ID: mdl-32426459

ABSTRACT

Synchronization of precise spike times across multiple neurons carries information about sensory stimuli. Inhibitory interneurons are suggested to promote this synchronization, but it is unclear whether distinct interneuron subtypes provide different contributions. To test this, we examined single-unit recordings from barrel cortex in vivo and used optogenetics to determine the contribution of parvalbumin (PV)- and somatostatin (SST)-positive interneurons to the synchronization of spike times across cortical layers. We found that PV interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are low (<12 Hz), whereas SST interneurons preferentially promote the synchronization of spike times when instantaneous firing rates are high (>12 Hz). Furthermore, using a computational model, we demonstrate that these effects can be explained by PV and SST interneurons having preferential contributions to feedforward and feedback inhibition, respectively. Our findings demonstrate that distinct subtypes of inhibitory interneurons have frequency-selective roles in the spatiotemporal synchronization of precise spike times.

7.
Brain Struct Funct ; 225(3): 935-954, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32107637

ABSTRACT

Accumulation of amyloid ß oligomers (AßO) in Alzheimer's disease (AD) impairs hippocampal theta and gamma oscillations. These oscillations are important in memory functions and depend on distinct subtypes of hippocampal interneurons such as somatostatin-positive (SST) and parvalbumin-positive (PV) interneurons. Here, we investigated whether AßO causes dysfunctions in SST and PV interneurons by optogenetically manipulating them during theta and gamma oscillations in vivo in AßO-injected SST-Cre or PV-Cre mice. Hippocampal in vivo multi-electrode recordings revealed that optogenetic activation of channelrhodopsin-2 (ChR2)-expressing SST and PV interneurons in AßO-injected mice selectively restored AßO-induced reduction of the peak power of theta and gamma oscillations, respectively, and resynchronized CA1 pyramidal cell (PC) spikes. Moreover, SST and PV interneuron spike phases were resynchronized relative to theta and gamma oscillations, respectively. Whole-cell voltage-clamp recordings in CA1 PC in ex vivo hippocampal slices from AßO-injected mice revealed that optogenetic activation of SST and PV interneurons enhanced spontaneous inhibitory postsynaptic currents (IPSCs) selectively at theta and gamma frequencies, respectively. Furthermore, analyses of the stimulus-response curve, paired-pulse ratio, and short-term plasticity of SST and PV interneuron-evoked IPSCs ex vivo showed that AßO increased the initial GABA release probability to depress SST/PV interneuron's inhibitory input to CA1 PC selectively at theta and gamma frequencies, respectively. Our results reveal frequency-specific and interneuron subtype-specific presynaptic dysfunctions of SST and PV interneurons' input to CA1 PC as the synaptic mechanisms underlying AßO-induced impairments of hippocampal network oscillations and identify them as potential therapeutic targets for restoring hippocampal network oscillations in early AD.


Subject(s)
Amyloid beta-Peptides/metabolism , Gamma Rhythm , Hippocampus/physiology , Interneurons/physiology , Theta Rhythm , Amyloid beta-Peptides/administration & dosage , Animals , Gamma Rhythm/drug effects , Gene Knock-In Techniques , Hippocampus/drug effects , Interneurons/drug effects , Mice , Optogenetics , Parvalbumins/analysis , Somatostatin/analysis , Theta Rhythm/drug effects
8.
BMC Biol ; 18(1): 7, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31937327

ABSTRACT

BACKGROUND: Abnormal accumulation of amyloid ß1-42 oligomers (AßO1-42), a hallmark of Alzheimer's disease, impairs hippocampal theta-nested gamma oscillations and long-term potentiation (LTP) that are believed to underlie learning and memory. Parvalbumin-positive (PV) and somatostatin-positive (SST) interneurons are critically involved in theta-nested gamma oscillogenesis and LTP induction. However, how AßO1-42 affects PV and SST interneuron circuits is unclear. Through optogenetic manipulation of PV and SST interneurons and computational modeling of the hippocampal neural circuits, we dissected the contributions of PV and SST interneuron circuit dysfunctions on AßO1-42-induced impairments of hippocampal theta-nested gamma oscillations and oscillation-induced LTP. RESULTS: Targeted whole-cell patch-clamp recordings and optogenetic manipulations of PV and SST interneurons during in vivo-like, optogenetically induced theta-nested gamma oscillations in vitro revealed that AßO1-42 causes synapse-specific dysfunction in PV and SST interneurons. AßO1-42 selectively disrupted CA1 pyramidal cells (PC)-to-PV interneuron and PV-to-PC synapses to impair theta-nested gamma oscillogenesis. In contrast, while having no effect on PC-to-SST or SST-to-PC synapses, AßO1-42 selectively disrupted SST interneuron-mediated disinhibition to CA1 PC to impair theta-nested gamma oscillation-induced spike timing-dependent LTP (tLTP). Such AßO1-42-induced impairments of gamma oscillogenesis and oscillation-induced tLTP were fully restored by optogenetic activation of PV and SST interneurons, respectively, further supporting synapse-specific dysfunctions in PV and SST interneurons. Finally, computational modeling of hippocampal neural circuits including CA1 PC, PV, and SST interneurons confirmed the experimental observations and further revealed distinct functional roles of PV and SST interneurons in theta-nested gamma oscillations and tLTP induction. CONCLUSIONS: Our results reveal that AßO1-42 causes synapse-specific dysfunctions in PV and SST interneurons and that optogenetic modulations of these interneurons present potential therapeutic targets for restoring hippocampal network oscillations and synaptic plasticity impairments in Alzheimer's disease.


Subject(s)
Action Potentials/physiology , Amyloid beta-Peptides/adverse effects , Hippocampus , Interneurons/physiology , Long-Term Potentiation/physiology , Parvalbumins/metabolism , Peptide Fragments/adverse effects , Somatostatin/metabolism , Animals , Mice , Optogenetics
9.
Biomed Opt Express ; 10(1): 267-282, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30775099

ABSTRACT

Two-photon excitation fluorescence microscopy is widely used to study the activity of neuronal circuits. However, the fast imaging is typically constrained to a single lateral plane for a standard microscope design. Given that cortical neuronal networks in a mouse brain are complex three-dimensional structures organised in six histologically defined layers which extend over many hundreds of micrometres, there is a strong demand for microscope systems that can record neuronal signalling in volumes. Henceforth, we developed a quasi-simultaneous multiplane imaging technique combining an acousto-optic deflector and static remote focusing to provide fast imaging of neurons from different axial positions inside the cortical layers without the need for mechanical disturbance of either the objective lens or the specimen. The hardware and the software are easily adaptable to existing two-photon microscopes. Here, we demonstrated that our imaging method can record, at high speed and high image contrast, the calcium dynamics of neurons in two different imaging planes separated axially with the in-focus and the refocused planes 120 µm and 250 µm below the brain surface respectively.

10.
iScience ; 4: 153-163, 2018 Jun 29.
Article in English | MEDLINE | ID: mdl-30240737

ABSTRACT

Second harmonic generation (SHG)-based probes are useful for nonlinear optical imaging of biological structures, such as the plasma membrane. Several amphiphilic porphyrin-based dyes with high SHG coefficients have been synthesized with different hydrophilic head groups, and their cellular targeting has been studied. The probes with cationic head groups localize better at the plasma membrane than the neutral probes with zwitterionic or non-charged ethylene glycol-based head groups. Porphyrin dyes with only dications as hydrophilic head groups localize inside HEK293T cells to give SHG, whereas tricationic dyes localize robustly at the plasma membrane of cells, including neurons, in vitro and ex vivo. The copper(II) complex of the tricationic dye with negligible fluorescence quantum yield works as an SHG-only dye. The free-base tricationic dye has been demonstrated for two-photon fluorescence and SHG-based multimodal imaging. This study demonstrates the importance of a balance between the hydrophobicity and hydrophilicity of amphiphilic dyes for effective plasma membrane localization.

11.
Proc Natl Acad Sci U S A ; 111(42): 15238-43, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25246561

ABSTRACT

Left-right asymmetries have likely evolved to make optimal use of bilaterian nervous systems; however, little is known about the synaptic and circuit mechanisms that support divergence of function between equivalent structures in each hemisphere. Here we examined whether lateralized hippocampal memory processing is present in mice, where hemispheric asymmetry at the CA3-CA1 pyramidal neuron synapse has recently been demonstrated, with different spine morphology, glutamate receptor content, and synaptic plasticity, depending on whether afferents originate in the left or right CA3. To address this question, we used optogenetics to acutely silence CA3 pyramidal neurons in either the left or right dorsal hippocampus while mice performed hippocampus-dependent memory tasks. We found that unilateral silencing of either the left or right CA3 was sufficient to impair short-term memory. However, a striking asymmetry emerged in long-term memory, wherein only left CA3 silencing impaired performance on an associative spatial long-term memory task, whereas right CA3 silencing had no effect. To explore whether synaptic properties intrinsic to the hippocampus might contribute to this left-right behavioral asymmetry, we investigated the expression of hippocampal long-term potentiation. Following the induction of long-term potentiation by high-frequency electrical stimulation, synapses between CA3 and CA1 pyramidal neurons were strengthened only when presynaptic input originated in the left CA3, confirming an asymmetry in synaptic properties. The dissociation of hippocampal long-term memory function between hemispheres suggests that memory is routed via distinct left-right pathways within the mouse hippocampus, and provides a promising approach to help elucidate the synaptic basis of long-term memory.


Subject(s)
CA3 Region, Hippocampal/physiology , Memory/physiology , Animals , Behavior, Animal , Brain Mapping , Dependovirus , Gene Silencing , Halorhodopsins/metabolism , Long-Term Potentiation/physiology , Male , Mice , Mice, Inbred C57BL , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Spatial Memory , Synapses/physiology
12.
Commun Integr Biol ; 5(3): 240-2, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22896783

ABSTRACT

We have previously synthesized a caged form of the use-dependent N-methyl-D-aspartate (NMDA) receptor ion channel blocker MK801 and used intracellular photolysis of this compound to demonstrate the subcellular location of NMDA receptor ion channels involved in synaptic plasticity. Here, we discuss considerations regarding the choice of caging molecule, synthesis and the potential uses for caged ion channel blockers in neurophysiology.

13.
Proc Natl Acad Sci U S A ; 109(8): 2919-24, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22315405

ABSTRACT

Multiphoton microscopy is a powerful tool in neuroscience, promising to deliver important data on the spatiotemporal activity within individual neurons as well as in networks of neurons. A major limitation of current technologies is the relatively slow scan rates along the z direction compared to the kHz rates obtainable in the x and y directions. Here, we describe a custom-built microscope system based on an architecture that allows kHz scan rates over hundreds of microns in all three dimensions without introducing aberration. We further demonstrate how this high-speed 3D multiphoton imaging system can be used to study neuronal activity at millisecond resolution at the subcellular as well as the population level.


Subject(s)
Imaging, Three-Dimensional/methods , Microscopy, Fluorescence, Multiphoton/methods , Neurons/physiology , Animals , Cerebral Cortex/cytology , Mice , Mice, Inbred C57BL , Reproducibility of Results
14.
Nat Neurosci ; 14(11): 1413-5, 2011 Sep 25.
Article in English | MEDLINE | ID: mdl-21946328

ABSTRACT

Postsynaptic spines at CA3-CA1 synapses differ in glutamate receptor composition according to the hemispheric origin of CA3 afferents. To study the functional consequences of this asymmetry, we used optogenetic tools to selectively stimulate axons of CA3 pyramidal cells originating in either left or right mouse hippocampus. We found that left CA3 input produced more long-term potentiation at CA1 synapses than right CA3 input as a result of differential expression of GluN2B subunit-containing NMDA receptors.


Subject(s)
CA1 Region, Hippocampal/cytology , CA3 Region, Hippocampal/physiology , Functional Laterality/physiology , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Animals , Animals, Newborn , Bacterial Proteins/genetics , Biophysics/methods , Calcium-Calmodulin-Dependent Protein Kinase Kinase/genetics , Channelrhodopsins , Electric Stimulation/methods , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/genetics , Gene Expression Regulation/genetics , Gene Expression Regulation/radiation effects , In Vitro Techniques , Light , Luminescent Proteins/genetics , Mice , Mice, Transgenic , Neuronal Plasticity/drug effects , Neuronal Plasticity/genetics , Patch-Clamp Techniques/methods , Receptors, AMPA/genetics , Receptors, AMPA/metabolism
15.
J Neurosci ; 31(23): 8564-8569, 2011 Jun 08.
Article in English | MEDLINE | ID: mdl-21653860

ABSTRACT

NMDA receptors are important for synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD). To help investigate the precise location of the NMDA receptors that are required for different types of synaptic plasticity, we synthesized a caged form of the use-dependent NMDA receptor antagonist MK801, which we loaded into individual neurons in vitro, followed by compartment-specific uncaging. We used this method to investigate timing-dependent plasticity at layer 4-layer 2/3 synapses of mouse barrel cortex. Somatodendritic photorelease of MK801 in the postsynaptic neuron produced a use-dependent block of synaptic NMDA receptor-mediated currents and prevented the induction of LTP. Compartment-specific photorelease of MK801 in the presynaptic neuron showed that axonal, but not somatodendritic, presynaptic NMDA receptors are required for induction of LTD. The rate of use-dependent block of postsynaptic NMDA receptor current was slower following induction of LTD, consistent with a presynaptic locus of expression. Thus, this new caged compound has demonstrated the axonal location of NMDA receptors required for induction and the presynaptic locus of expression of LTD at layer 4-layer 2/3 synapses.


Subject(s)
Excitatory Amino Acid Antagonists/pharmacology , Long-Term Synaptic Depression/physiology , Neurons/physiology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Somatosensory Cortex/physiology , Animals , Dizocilpine Maleate/pharmacology , Electrophysiology , Long-Term Synaptic Depression/drug effects , Mice , Neurons/drug effects , Somatosensory Cortex/drug effects , Synapses/drug effects , Synapses/physiology
16.
Adv Pharmacol ; 58: 205-29, 2010.
Article in English | MEDLINE | ID: mdl-20655484

ABSTRACT

Temporally-structured cortical activity in the form of synchronized network oscillations and persistent activity is fundamental for cognitive processes such as sensory processing, motor control, working memory, and consolidation of long-term memory. The roles of fast glutamatergic excitation via AMPA, kainate, and NMDA receptors, as well as fast GABAergic inhibition via GABA(A) receptors, in such network activity have been studied in great detail. In contrast, we have only recently begun to appreciate the roles of slow inhibition via GABA(B) receptors in the control of cortical network activity. Here, we provide a framework for understanding the contributions of GABA(B) receptors in helping mediate, modulate, and moderate different types of physiological and pathological cortical network activity. We demonstrate how the slow time course of GABA(B) receptor-mediated inhibition is well suited to help mediate the slow oscillation, to modulate the power and spatial profile of gamma oscillations, and to moderate the relative spike timing of individual neurons during theta oscillations. We further suggest that GABA(B) receptors are interesting therapeutic targets in pathological conditions where cortical network activity is disturbed, such as epilepsy and schizophrenia.


Subject(s)
Cerebral Cortex/metabolism , Nerve Net/metabolism , Receptors, GABA-B/metabolism , Animals , Cerebral Cortex/pathology , Hippocampus/metabolism , Hippocampus/pathology , Humans
17.
J Neurosci ; 29(23): 7513-7518, 2009 Jun 10.
Article in English | MEDLINE | ID: mdl-19515919

ABSTRACT

Cortical networks spontaneously fluctuate between persistently active Up states and quiescent Down states. The Up states are maintained by recurrent excitation within local circuits, and can be turned on and off by synaptic input. GABAergic inhibition is believed to be important for stabilizing such persistent activity by balancing the excitation, and could have an additional role in terminating the Up state. Here, we report that GABA(A) and GABA(B) receptor-mediated inhibition have distinct and complementary roles in balancing and terminating persistent activity. In a model of Up-Down states expressed in slices of rat entorhinal cortex, the GABA(A) receptor antagonist, gabazine (50-500 nM), concentration-dependently decreased Up state duration, eventually leading to epileptiform bursts. In contrast, the GABA(B) receptor antagonist, CGP55845 (50 nM to 1 microM), increased the duration of persistent network activity, and prevented stimulus-induced Down state transitions. These results suggest that while GABA(A) receptor-mediated inhibition is necessary for balancing persistent activity, activation of GABA(B) receptors contributes to terminating Up states.


Subject(s)
Entorhinal Cortex/physiology , Neurons/physiology , Receptors, GABA-A/metabolism , Receptors, GABA-B/metabolism , Action Potentials , Analysis of Variance , Animals , Dose-Response Relationship, Drug , Electric Stimulation , Female , GABA Antagonists/pharmacology , GABA-A Receptor Antagonists , GABA-B Receptor Antagonists , In Vitro Techniques , Male , Patch-Clamp Techniques , Periodicity , Pyridazines/pharmacology , Rats , Rats, Wistar
18.
J Am Chem Soc ; 131(8): 2758-9, 2009 Mar 04.
Article in English | MEDLINE | ID: mdl-19209855

ABSTRACT

Amphiphilic donor-acceptor meso-ethynyl porphyrins with polar pyridinium electron-acceptor head groups and hydrophobic dialkyl-aniline electron donors have high molecular hyperpolarizabilities (as measured by hyper-Rayleigh scattering) and high affinities for biological membranes. When bound to water droplets in dodecane, or to the plasma membranes of living cells, they can be used for second harmonic generation (SHG) microscopy; an incident light of wavelength 840 nm generates a strong frequency-doubled signal at 420 nm. Copper(II) and nickel(II) porphyrin complexes give similar SHG signals to those of the free-base porphyrins, while exhibiting no detectable two-photon excited fluorescence.


Subject(s)
Microscopy, Fluorescence/methods , Porphyrins/chemistry , Cell Line, Tumor , Copper/chemistry , Humans , Membrane Lipids/chemistry , Metalloporphyrins/chemistry , Nickel/chemistry , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...