Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
PLoS One ; 19(6): e0303298, 2024.
Article in English | MEDLINE | ID: mdl-38885224

ABSTRACT

Fourier transform infrared (FTIR) spectroscopy is a biophysical technique used for non-destructive biochemical profiling of biological samples. It can provide comprehensive information about the total cellular biochemical profile of microbial cells. In this study, FTIR spectroscopy was used to perform biochemical characterization of twenty-nine bacterial strains isolated from the Antarctic meltwater ponds. The bacteria were grown on two forms of brain heart infusion (BHI) medium: agar at six different temperatures (4, 10, 18, 25, 30, and 37°C) and on broth at 18°C. Multivariate data analysis approaches such as principal component analysis (PCA) and correlation analysis were used to study the difference in biochemical profiles induced by the cultivation conditions. The observed results indicated a strong correlation between FTIR spectra and the phylogenetic relationships among the studied bacteria. The most accurate taxonomy-aligned clustering was achieved with bacteria cultivated on agar. Cultivation on two forms of BHI medium provided biochemically different bacterial biomass. The impact of temperature on the total cellular biochemical profile of the studied bacteria was species-specific, however, similarly for all bacteria, lipid spectral region was the least affected while polysaccharide region was the most affected by different temperatures. The biggest temperature-triggered changes of the cell chemistry were detected for bacteria with a wide temperature tolerance such Pseudomonas lundensis strains and Acinetobacter lwoffii BIM B-1558.


Subject(s)
Bacteria , Phylogeny , Ponds , Antarctic Regions , Spectroscopy, Fourier Transform Infrared/methods , Bacteria/classification , Bacteria/isolation & purification , Ponds/microbiology , Temperature , Water Microbiology , Principal Component Analysis
2.
ACS Food Sci Technol ; 4(4): 895-904, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38660051

ABSTRACT

The climate crisis further exacerbates the challenges for food production. For instance, the increasingly unpredictable growth of fungal species in the field can lead to an unprecedented high prevalence of several mycotoxins, including the most important toxic secondary metabolite produced by Fusarium spp., i.e., deoxynivalenol (DON). The presence of DON in crops may cause health problems in the population and livestock. Hence, there is a demand for advanced strategies facilitating the detection of DON contamination in cereal-based products. To address this need, we introduce infrared attenuated total reflection (IR-ATR) spectroscopy combined with advanced data modeling routines and optimized sample preparation protocols. In this study, we address the limited exploration of wheat commodities to date via IR-ATR spectroscopy. The focus of this study was optimizing the extraction protocol for wheat by testing various solvents aligned with a greener and more sustainable analytical approach. The employed chemometric method, i.e., sparse partial least-squares discriminant analysis, not only facilitated establishing robust classification models capable of discriminating between high vs low DON-contaminated samples adhering to the EU regulatory limit of 1250 µg/kg but also provided valuable insights into the relevant parameters shaping these models.

3.
Environ Microbiol Rep ; 16(1): e13232, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38308519

ABSTRACT

Temperature significantly impacts bacterial physiology, metabolism and cell chemistry. In this study, we analysed lipids and the total cellular biochemical profile of 74 fast-growing Antarctic bacteria grown at different temperatures. Fatty acid diversity and temperature-induced alterations aligned with bacterial classification-Gram-groups, phylum, genus and species. Total lipid content, varied from 4% to 19% of cell dry weight, was genus- and species-specific. Most bacteria increased lipid content at lower temperatures. The effect of temperature on the profile was complex and more species-specific, while some common for all bacteria responses were recorded. Gram-negative bacteria adjusted unsaturation and acyl chain length. Gram-positive bacteria adjusted methyl branching (anteiso-/iso-), chain length and unsaturation. Fourier transform infrared spectroscopy analysis revealed Gram-, genus- and species-specific changes in the total cellular biochemical profile triggered by temperature fluctuations. The most significant temperature-related alterations detected on all taxonomy levels were recorded for mixed region 1500-900 cm-1 , specifically the band at 1083 cm-1 related to phosphodiester groups mainly from phospholipids (for Gram-negative bacteria) and teichoic/lipoteichoic acids (for Gram-positive bacteria). Some changes in protein region were detected for a few genera, while the lipid region remained relatively stable despite the temperature fluctuations.


Subject(s)
Fatty Acids , Membrane Lipids , Temperature , Membrane Lipids/analysis , Membrane Lipids/chemistry , Membrane Lipids/metabolism , Antarctic Regions , Fatty Acids/metabolism , Bacteria/genetics , Bacteria/metabolism , Gram-Negative Bacteria/genetics
4.
Microb Cell Fact ; 22(1): 261, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110983

ABSTRACT

BACKGROUND: Monitoring and control of both growth media and microbial biomass is extremely important for the development of economical bioprocesses. Unfortunately, process monitoring is still dependent on a limited number of standard parameters (pH, temperature, gasses etc.), while the critical process parameters, such as biomass, product and substrate concentrations, are rarely assessable in-line. Bioprocess optimization and monitoring will greatly benefit from advanced spectroscopy-based sensors that enable real-time monitoring and control. Here, Fourier transform (FT) Raman spectroscopy measurement via flow cell in a recirculatory loop, in combination with predictive data modeling, was assessed as a fast, low-cost, and highly sensitive process analytical technology (PAT) system for online monitoring of critical process parameters. To show the general applicability of the method, submerged fermentation was monitored using two different oleaginous and carotenogenic microorganisms grown on two different carbon substrates: glucose fermentation by yeast Rhodotorula toruloides and glycerol fermentation by marine thraustochytrid Schizochytrium sp. Additionally, the online FT-Raman spectroscopy approach was compared with two at-line spectroscopic methods, namely FT-Raman and FT-infrared spectroscopies in high throughput screening (HTS) setups. RESULTS: The system can provide real-time concentration data on carbon substrate (glucose and glycerol) utilization, and production of biomass, carotenoid pigments, and lipids (triglycerides and free fatty acids). Robust multivariate regression models were developed and showed high level of correlation between the online FT-Raman spectral data and reference measurements, with coefficients of determination (R2) in the 0.94-0.99 and 0.89-0.99 range for all concentration parameters of Rhodotorula and Schizochytrium fermentation, respectively. The online FT-Raman spectroscopy approach was superior to the at-line methods since the obtained information was more comprehensive, timely and provided more precise concentration profiles. CONCLUSIONS: The FT-Raman spectroscopy system with a flow measurement cell in a recirculatory loop, in combination with prediction models, can simultaneously provide real-time concentration data on carbon substrate utilization, and production of biomass, carotenoid pigments, and lipids. This data enables monitoring of dynamic behaviour of oleaginous and carotenogenic microorganisms, and thus can provide critical process parameters for process optimization and control. Overall, this study demonstrated the feasibility of using FT-Raman spectroscopy for online monitoring of fermentation processes.


Subject(s)
Carbon , Spectrum Analysis, Raman , Fermentation , Spectrum Analysis, Raman/methods , Biomass , Carbon/metabolism , Glycerol , Triglycerides , Glucose/metabolism , Carotenoids/metabolism
5.
PLoS One ; 18(8): e0289824, 2023.
Article in English | MEDLINE | ID: mdl-37616300

ABSTRACT

The management of cancer patients has markedly improved with the advent of personalised medicine where treatments are given based on tumour antigen expression amongst other. Within this remit, liquid biopsies will no doubt improve this personalised cancer management. Identifying circulating tumour cells in blood allows a better assessment for tumour screening, staging, response to treatment and follow up. However, methods to identify/capture these circulating tumour cells using cancer cells' antigen expression or their physical properties are not robust enough. Thus, a methodology that can identify these circulating tumour cells in blood regardless of the type of tumour is highly needed. Fourier Transform Infrared (FTIR) microspectroscopy, which can separate cells based on their biochemical composition, could be such technique. In this feasibility study, we studied lung cancer cells (squamous cell carcinoma and adenocarcinoma) mixed with peripheral blood mononuclear cells (PBMC). The data obtained shows, for the first time, that FTIR microspectroscopy together with Random Forest classifier is able to identify a single lung cancer cell in blood. This separation was easier when the region of the IR spectra containing lipids and the amide A (2700 to 3500 cm-1) was used. Furthermore, this work was carried out using glass coverslips as substrates that are widely used in pathology departments. This allows further histopathological cell analysis (staining, immunohistochemistry, …) after FTIR spectra are obtained. Hence, although further work is needed using blood samples from patients with cancer, FTIR microspectroscopy could become another tool to be used in liquid biopsies for the identification of circulating tumour cells, and in the personalised management of cancer.


Subject(s)
Lung Neoplasms , Neoplastic Cells, Circulating , Humans , Feasibility Studies , Leukocytes, Mononuclear , Fourier Analysis , Lung Neoplasms/diagnosis , Liquid Biopsy
6.
Appl Spectrosc ; 77(9): 1073-1086, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37525897

ABSTRACT

The analytical performance of a compact infrared attenuated total reflection spectrometer using a pyroelectric detector array has been evaluated and compared to a conventional laboratory Fourier transform infrared system for applications in food analysis. Analytical characteristics including sensitivity, repeatability, linearity of the calibration functions, signal-to-noise ratio, and spectral resolution have been derived for both approaches. Representative analytes of relevance in food industries (i.e., organic solvents, fatty acids, and mycotoxins) have been used for the assessment of the performance of the device and to discuss the potential of this technology in food and feed analysis.


Subject(s)
Fatty Acids , Food Analysis , Spectroscopy, Fourier Transform Infrared , Fatty Acids/analysis
7.
J Pers Med ; 13(7)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37511649

ABSTRACT

Mid-infrared spectroscopy (MIR), near-infrared spectroscopy (NIR), and Raman spectroscopy are all well-established analytical techniques in biomedical applications. Since they provide complementary chemical information, we aimed to determine whether combining them amplifies their strengths and mitigates their weaknesses. This study investigates the feasibility of the fusion of MIR, NIR, and Raman spectroscopic data for characterising articular cartilage integrity. Osteochondral specimens from bovine patellae were subjected to mechanical and enzymatic damage, and then MIR, NIR, and Raman data were acquired from the damaged and control specimens. We assessed the capacity of individual spectroscopic methods to classify the samples into damage or control groups using Partial Least Squares Discriminant Analysis (PLS-DA). Multi-block PLS-DA was carried out to assess the potential of data fusion by combining the dataset by applying two-block (MIR and NIR, MIR and Raman, NIR and Raman) and three-block approaches (MIR, NIR, and Raman). The results of the one-block models show a higher classification accuracy for NIR (93%) and MIR (92%) than for Raman (76%) spectroscopy. In contrast, we observed the highest classification efficiency of 94% and 93% for the two-block (MIR and NIR) and three-block models, respectively. The detailed correlative analysis of the spectral features contributing to the discrimination in the three-block models adds considerably more insight into the molecular origin of cartilage damage.

8.
J Biophotonics ; 16(10): e202300049, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37439117

ABSTRACT

Infrared instruments with smaller and cost-effective components such as bandpass filters, single channel detectors, and laser-based light sources are being developed to provide cheaper and faster analysis of biological samples. Such instruments often provide measurements in form of sparse data, which include a collection of single-frequency channels or a collection of channels covering very narrow spectral ranges, called here multi-frequency channels. To keep costs low, the number of channels needs to be kept at a minimum. However, modelling and preprocessing of sparse data needs enough channels to perform the task. The aim of this study therefore was to understand the effect of channels sampling on data modelling results and find optimal modelling algorithm for different type of sparse data. The sparse data was simulated using Fourier Transform Infrared spectra of milk and fungi. Regression models were established to predict fatty acid composition by partial least squares regression (PLSR), multiple linear regression (MLR) and random forest (RF) methods. We observe that PLSR algorithm is very well suited for sparse data such as multi-frequency channels: excellent calibration models were obtained with only three channels comprising three wavenumbers each. The results were comparable to results obtained with full spectra. MLR and RF in turn provided similarly good results using data with single-frequency channels requiring nine channels in total.

9.
Analyst ; 148(13): 2941-2955, 2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37219066

ABSTRACT

Mid-infrared microspectroscopy is a non-invasive tool for identifying the molecular structure and chemical composition at the scale of the probe, i.e. at the scale of the beam. Consequently, investigating small objects or domains (commensurable to the wavelength) requires high-resolution measurements, even down to the diffraction limit. Herein, different protocols and machines allowing high-resolution measurements in transmission mode (aperture size (i.e., beam size) from 15 × 15 µm to 3 × 3 µm) are tested using the same sample. The model sample is a closed cavity containing a water-air assemblage buried in a quartz fragment (fluid inclusion). The spectral range covers the water stretching band (3000-3800 cm-1), whose variations are followed as a function of the distance to the cavity wall. The experiments compare the performance of one focal plane array (FPA) detector associated with a Globar source with respect to a single-element mercury cadmium telluride (MCT) detector associated with a supercontinuum laser (SCL) or a synchrotron radiation source (SRS). This work also outlines the importance of post-experimental data processing, including interference fringe removal and Mie scattering correction, to ensure that the observed spectral signatures are not related to optical aberrations. We show that the SCL and the SRS-based setups detect specific spectral features along the quartz boundary (solid surface), invisible to the FPA imaging microscope. Additionally, the broadband SCL thus has the potential to substitute at the laboratory scale the SRS for conducting diffraction-limited high-resolution measurements.

10.
Bioresour Technol ; 376: 128827, 2023 May.
Article in English | MEDLINE | ID: mdl-36878374

ABSTRACT

In this study lignocellulosic sugars from Norway spruce were used for production of docosahexaenoic acid (DHA) by the marine thraustochytrid Aurantiochytrium limacinum SR21. Enzymatically prepared spruce hydrolysate was combined with a complex nitrogen source and different amounts of salts. Shake flask batch cultivations revealed that addition of extra salts was not needed for optimal growth. Upscaling to fed-batch bioreactors yielded up to 55 g/L cell dry mass and a total fatty acid content of 44% (w/w) out of which 1/3 was DHA. Fourier transform infrared spectroscopy was successfully applied as a rapid method for monitoring lipid accumulation in A. limacinum SR21. Thus, this proof-of-principle study clearly demonstrates that crude spruce hydrolysates can be directly used as a novel and sustainable resource for production of DHA.


Subject(s)
Stramenopiles , Sugars , Docosahexaenoic Acids , Bioreactors , Fatty Acids
11.
Sci Rep ; 13(1): 3165, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823297

ABSTRACT

It is well known that infrared microscopy of micrometer sized samples suffers from strong scattering distortions, attributed to Mie scattering. The state-of-the-art preprocessing technique for modelling and removing Mie scattering features from infrared absorbance spectra of biological samples is built on a meta model for perfect spheres. However, non-spherical cell shapes are the norm rather than the exception, and it is therefore highly relevant to evaluate the validity of this preprocessing technique for deformed spherical systems. Addressing these cases, we investigate both numerically and experimentally the absorbance spectra of 3D-printed individual domes, rows of up to five domes, two domes with varying distance, and semi-capsules of varying lengths as model systems of deformed individual cells and small cell clusters. We find that coupling effects between individual domes are small, corroborating previous related literature results for spheres. Further, we point out and illustrate with examples that, while optical reciprocity guarantees the same extinction efficiency for top vs. bottom illumination, a scatterer's internal field may be vastly different in these two situations. Finally, we demonstrate that the ME-EMSC model for preprocessing infrared spectra from spherical biological systems is valid also for deformed spherical systems.


Subject(s)
Algorithms , Models, Biological , Scattering, Radiation , Light , Microscopy
12.
Carbohydr Polym ; 302: 120428, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36604090

ABSTRACT

The rising demand for chitin and chitosan in chemical, agro-food, and healthcare industries is creating a need for rapid and high-throughput analysis. The physicochemical properties of these biopolymers are greatly dependent on the degree of acetylation (DA). Conventional methods for DA determination, such as LC-MS and 1H NMR, are time-consuming when performed on many samples, and therefore efficient methods are needed. Here, high-throughput microplate-based FTIR and FT-Raman methods were compared with their manual counterparts. Partial least squares regression models were based on 30 samples of chitin and chitosan with reference DA values obtained by LC-MS and 1H NMR, and the models were validated on an independent test set of 16 samples. The overall predictive accuracy of the high-throughput methods was at the same level as the manual methods and the well-established LC-MS and 1H NMR methods. Therefore, high-throughput FTIR and FT-Raman DA determination methods have great potential to serve as fast and economical substitutes for traditional methods.


Subject(s)
Chitin , Chitosan , Chitin/chemistry , Chitosan/chemistry , Acetylation , Biopolymers , Magnetic Resonance Spectroscopy
13.
Anal Methods ; 15(1): 36-47, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36448527

ABSTRACT

Farmers, cereal suppliers and processors demand rapid techniques for the assessment of mould-associated contamination. Deoxynivalenol (DON) is among the most important Fusarium toxins and related to human and animal diseases besides causing significant economic losses. Routine analytical techniques for the analysis of DON are either based on chromatographic or immunoanalytical techniques, which are time-consuming and frequently rely on hazardous consumables. The present study evaluates the feasibility of infrared attenuated total reflection spectroscopy (IR-ATR) for the analysis of maize extracts via different solvents optimized for the determination of DON contamination along the regulatory requirements by the European Union (EU) for unprocessed maize (1750 µg kg-1). Reference analysis was done by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). The studied maize samples were either naturally infected or had been artificially inoculated in the field with Fusarium graminearum, Fusarium culmorum or Fusarium verticillioides. Principal component analysis demonstrated that water and methanol-water (70 : 30% v) were optimum solvents for differentiating DON contamination levels. Supervised partial least squares discriminant analysis resulted in excellent classification accuracies of 86.7% and 90.8% for water and methanol-water extracts, respectively. The IR spectra of samples with fungal infection and high DON contamination had distinct spectral features, which could be related to carbohydrates, proteins and lipid content within the investigated extracts.


Subject(s)
Food Contamination , Zea mays , Animals , Humans , Zea mays/chemistry , Zea mays/microbiology , Chromatography, Liquid , Food Contamination/analysis , Solvents , Methanol/analysis , Chemometrics , Tandem Mass Spectrometry , Spectrophotometry, Infrared/methods , Water
14.
Sci Rep ; 12(1): 13327, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922455

ABSTRACT

Infrared microspectroscopy is a powerful tool in the analysis of biological samples. However, strong electromagnetic scattering may occur since the wavelength of the incident radiation and the samples may be of comparable size. Based on the Mie theory of single spheres, correction algorithms have been developed to retrieve pure absorbance spectra. Studies of the scattering characteristics of samples of different types, obtained by microspectroscopy, have been performed. However, the detailed, microscopic effects of the coupling of the samples on signatures in spectra, obtained by infrared microspectroscopy, are still not clear. The aim of this paper is to investigate how the coupling of spherical samples influences the spectra. Applying the surface integral equation (SIE) method, we simulate small dielectric spheres, arranged as double-spheres or small arrays of spheres. We find that the coupling of the spheres hardly influences the broad oscillations observed in infrared spectra (the Mie wiggles) unless the radii of the spheres are different or the angle between the direction of the incident radiation and the normal of the plane where the spheres are located is large. Sharp resonance features in the spectra (the Mie ripples) are affected by the coupling of the spheres and this effect depends on the polarization of the incident wave. Experiments are performed to verify our conclusions.


Subject(s)
Algorithms , Light
15.
Biology (Basel) ; 11(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35741411

ABSTRACT

Temperature fluctuations and nutrient composition are the main parameters influencing green snow microbiome. In this study we investigated the influence of temperature and nutrient conditions on the growth and cellular chemical profile of bacteria isolated from green snow. Chemical profiling of the green snow bacteria was done by high-throughput FTIR spectroscopy combined with multivariate data analysis. We showed that temperature and nutrients fluctuations strongly affect growth ability and chemical profile of the green snow bacteria. The size of colonies for green snow bacteria grown at higher (25 °C) and lower (4 °C and 10 °C) than optimal temperature (18 °C) was smaller. All isolates grew on rich medium, and only 19 isolates were able to grow on synthetic minimal media. Lipid and mixed spectral regions showed to be phylogeny related. FTIR fingerprinting indicates that lipids are often affected by the temperature fluctuations. Growth on different media resulted in the change of the whole chemical profile, where lipids showed to be more affected than proteins and polysaccharides. Correlation analysis showed that nutrient composition is clearly strongly influencing chemical changes in the cells, followed by temperature.

16.
Genet Sel Evol ; 54(1): 35, 2022 May 26.
Article in English | MEDLINE | ID: mdl-35619070

ABSTRACT

BACKGROUND: Although bovine milk is regarded as healthy and nutritious, its high content of saturated fatty acids (FA) may be harmful to cardiovascular health. Palmitic acid (C16:0) is the predominant saturated FA in milk with adverse health effects that could be countered by substituting it with higher levels of unsaturated FA, such as oleic acid (C18:1cis-9). In this work, we performed genome-wide association analyses for milk fatty acids predicted from FTIR spectroscopy data using 1811 Norwegian Red cattle genotyped and imputed to a high-density 777k single nucleotide polymorphism (SNP)-array. In a follow-up analysis, we used imputed whole-genome sequence data to detect genetic variants that are involved in FTIR-predicted levels of C16:0 and C18:1cis-9 and explore the transcript profile and protein level of candidate genes. RESULTS: Genome-wise significant associations were detected for C16:0 on Bos taurus (BTA) autosomes 11, 16 and 27, and for C18:1cis-9 on BTA5, 13 and 19. Closer examination of a significant locus on BTA11 identified the PAEP gene, which encodes the milk protein ß-lactoglobulin, as a particularly attractive positional candidate gene. At this locus, we discovered a tightly linked cluster of genetic variants in coding and regulatory sequences that have opposing effects on the levels of C16:0 and C18:1cis-9. The favourable haplotype, linked to reduced levels of C16:0 and increased levels of C18:1cis-9 was also associated with a marked reduction in PAEP expression and ß-lactoglobulin protein levels. ß-lactoglobulin is the most abundant whey protein in milk and lower levels are associated with important dairy production parameters such as improved cheese yield. CONCLUSIONS: The genetic variants detected in this study may be used in breeding to produce milk with an improved FA health-profile and enhanced cheese-making properties.


Subject(s)
Fatty Acids , Genome-Wide Association Study , Animals , Cattle/genetics , Fatty Acids/analysis , Lactoglobulins/analysis , Lactoglobulins/genetics , Lactoglobulins/metabolism , Milk/chemistry , Milk Proteins/genetics
17.
Molecules ; 27(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35408697

ABSTRACT

Preclassification of raw infrared spectra has often been neglected in scientific literature. Separating spectra of low spectral quality, due to low signal-to-noise ratio, presence of artifacts, and low analyte presence, is crucial for accurate model development. Furthermore, it is very important for sparse data, where it becomes challenging to visually inspect spectra of different natures. Hence, a preclassification approach to separate infrared spectra for sparse data is needed. In this study, we propose a preclassification approach based on Multiplicative Signal Correction (MSC). The MSC approach was applied on human and the bovine knee cartilage broadband Fourier Transform Infrared (FTIR) spectra and on a sparse data subset comprising of only seven wavelengths. The goal of the preclassification was to separate spectra with analyte-rich signals (i.e., cartilage) from spectra with analyte-poor (and high-matrix) signals (i.e., water). The human datasets 1 and 2 contained 814 and 815 spectra, while the bovine dataset contained 396 spectra. A pure water spectrum was used as a reference spectrum in the MSC approach. A threshold for the root mean square error (RMSE) was used to separate cartilage from water spectra for broadband and the sparse spectral data. Additionally, standard noise-to-ratio and principle component analysis were applied on broadband spectra. The fully automated MSC preclassification approach, using water as reference spectrum, performed as well as the manual visual inspection. Moreover, it enabled not only separation of cartilage from water spectra in broadband spectral datasets, but also in sparse datasets where manual visual inspection cannot be applied.


Subject(s)
Light , Water , Animals , Cattle , Humans , Principal Component Analysis , Spectroscopy, Fourier Transform Infrared/methods
18.
Molecules ; 27(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35335264

ABSTRACT

Extended multiplicative signal correction (EMSC) is a widely used preprocessing technique in infrared spectroscopy. EMSC is a model-based method favored for its flexibility and versatility. The model can be extended by adding constituent spectra to explicitly model-known analytes or interferents. This paper addresses the use of constituent spectra and demonstrates common pitfalls. It clarifies the difference between analyte and interferent spectra, and the importance of orthogonality between model spectra. Different normalization approaches are discussed, and the importance of weighting in the EMSC is demonstrated. The paper illustrates how constituent analyte spectra can be estimated, and how they can be used to extract additional information from spectral features. It is shown that the EMSC parameters can be used in both regression tasks and segmentation tasks.


Subject(s)
Spectrophotometry, Infrared
19.
Molecules ; 27(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35164133

ABSTRACT

The aim of the study was to optimize preprocessing of sparse infrared spectral data. The sparse data were obtained by reducing broadband Fourier transform infrared attenuated total reflectance spectra of bovine and human cartilage, as well as of simulated spectral data, comprising several thousand spectral variables into datasets comprising only seven spectral variables. Different preprocessing approaches were compared, including simple baseline correction and normalization procedures, and model-based preprocessing, such as multiplicative signal correction (MSC). The optimal preprocessing was selected based on the quality of classification models established by partial least squares discriminant analysis for discriminating healthy and damaged cartilage samples. The best results for the sparse data were obtained by preprocessing using a baseline offset correction at 1800 cm-1, followed by peak normalization at 850 cm-1 and preprocessing by MSC.


Subject(s)
Cartilage/chemistry , Signal Processing, Computer-Assisted , Animals , Cattle , Female , Humans , Male , Spectroscopy, Fourier Transform Infrared
20.
Commun Chem ; 5(1): 175, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36697906

ABSTRACT

Infrared spectroscopy delivers abundant information about the chemical composition, as well as the structural and optical properties of intact samples in a non-destructive manner. We present a deep convolutional neural network which exploits all of this information and solves full-wave inverse scattering problems and thereby obtains the 3D optical, structural and chemical properties from infrared spectroscopic measurements of intact micro-samples. The proposed model encodes scatter-distorted infrared spectra and infers the distribution of the complex refractive index function of concentrically spherical samples, such as many biological cells. The approach delivers simultaneously the molecular absorption, sample morphology and effective refractive index in both the cell wall and interior from a single measured spectrum. The model is trained on simulated scatter-distorted spectra, where absorption in the distinct layers is simulated and the scatter-distorted spectra are estimated by analytic solutions of Maxwell's equations for samples of different sizes. This allows for essentially real-time deep learning-enabled infrared diffraction micro-tomography, for a large subset of biological cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...