Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Front Physiol ; 15: 1340166, 2024.
Article in English | MEDLINE | ID: mdl-38681141

ABSTRACT

Background: Flavin monooxygenases (FMOs) are enzymes responsible for the oxidation of a broad spectrum of exogenous and endogenous amines. There is increasing evidence that trimethylamine (TMA), a compound produced by gut bacteria and also recognized as an industrial pollutant, contributes to cardiovascular diseases. FMOs convert TMA into trimethylamine oxide (TMAO), which is an emerging marker of cardiovascular risk. This study hypothesized that blood pressure phenotypes in rats might be associated with variations in the expression of FMOs. Methods: The expression of FMO1, FMO3, and FMO5 was evaluated in the kidneys, liver, lungs, small intestine, and large intestine of normotensive male Wistar-Kyoto rats (WKY) and two distinct hypertensive rat models: spontaneously hypertensive rats (SHRs) and WKY rats with angiotensin II-induced hypertension (WKY-ANG). Plasma concentrations of TMA and TMAO were measured at baseline and after intravenous administration of TMA using liquid chromatography-mass spectrometry (LC-MS). Results: We found that the expression of FMOs in WKY, SHR, and WKY-ANG rats was in the descending order of FMO3 > FMO1 >> FMO5. The highest expression of FMOs was observed in the liver. Notably, SHRs exhibited a significantly elevated expression of FMO3 in the liver compared to WKY and WKY-ANG rats. Additionally, the plasma TMAO/TMA ratio was significantly higher in SHRs than in WKY rats. Conclusion: SHRs demonstrate enhanced expression of FMO3 and a higher plasma TMAO/TMA ratio. The variability in the expression of FMOs and the metabolism of amines might contribute to the hypertensive phenotype observed in SHRs.

2.
PLoS One ; 19(1): e0297474, 2024.
Article in English | MEDLINE | ID: mdl-38266015

ABSTRACT

INTRODUCTION: Increased plasma trimethylamine oxide (TMAO) is observed in cardiovascular and metabolic diseases, originating from the gut microbiota product, trimethylamine (TMA), via flavin-containing monooxygenases (FMOs)-dependent oxidation. Numerous studies have investigated the association between plasma TMAO and various pathologies, yet limited knowledge exists regarding tissue concentrations of TMAO, TMAO precursors, and interspecies variability. METHODS: Chromatography coupled with mass spectrometry was employed to evaluate tissue concentrations of TMAO and its precursors in adult male mice, rats, and guinea pigs. FMO mRNA and protein levels were assessed through PCR and Western blot, respectively. RESULTS: Plasma TMAO levels were similar among the studied species. However, significant differences in tissue concentrations of TMAO were observed between mice, rats, and guinea pigs. The rat renal medulla exhibited the highest TMAO concentration, while the lowest was found in the mouse liver. Mice demonstrated significantly higher plasma TMA concentrations compared to rats and guinea pigs, with the highest TMA concentration found in the mouse renal medulla and the lowest in the rat lungs. FMO5 exhibited the highest expression in mouse liver, while FMO3 was highly expressed in rats. Guinea pigs displayed low expression of FMOs in this tissue. CONCLUSION: Despite similar plasma TMAO levels, mice, rats, and guinea pigs exhibited significant differences in tissue concentrations of TMA, TMAO, and FMO expression. These interspecies variations should be considered in the design and interpretation of experimental studies. Furthermore, these findings may suggest a diverse importance of the TMAO pathway in the physiology of the evaluated species.


Subject(s)
Metabolic Diseases , Methylamines , Male , Rats , Mice , Guinea Pigs , Animals , Bacteria , Biomarkers , Lung
3.
Crit Rev Anal Chem ; : 1-24, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37326587

ABSTRACT

In modern medical diagnostics, where analytical chemistry plays a key role, fast and accurate identification of pathogens is becoming increasingly important. Infectious diseases pose a growing threat to public health due to population growth, international air travel, bacterial resistance to antibiotics, and other factors. For instance, the detection of SARS-CoV-2 in patient samples is a key tool to monitor the spread of the disease. While there are several techniques for identifying pathogens by their genetic code, most of these methods are too expensive or slow to effectively analyze clinical and environmental samples that may contain hundreds or even thousands of different microbes. Standard approaches (e.g., culture media and biochemical assays) are known to be very time- and labor-intensive. The purpose of this review paper is to highlight the problems associated with the analysis and identification of pathogens that cause many serious infections. Special attention was paid to the description of mechanisms and the explanation of the phenomena and processes occurring on the surface of pathogens as biocolloids (charge distribution). This review also highlights the importance of electromigration techniques and demonstrates their potential for pathogen pre-separation and fractionation and demonstrates the use of spectrometric methods, such as MALDI-TOF MS, for their detection and identification.

4.
Biomolecules ; 12(12)2022 12 12.
Article in English | MEDLINE | ID: mdl-36551280

ABSTRACT

The skin, acting as the outer protection of the human body, is most vulnerable to injury. Wound healing can often be impaired, leading to chronic, hard-to-heal wounds. For this reason, searching for the most effective dressings that can significantly enhance the wound healing process is necessary. In this regard, silk fibroin, a protein derived from silk fibres that has excellent properties, is noteworthy. Silk fibroin is highly biocompatible and biodegradable. It can easily make various dressings, which can be loaded with additional substances to improve healing. Dressings based on silk fibroin have anti-inflammatory, pro-angiogenic properties and significantly accelerate skin wound healing, even compared to commercially available wound dressings. Animal studies confirm the beneficial influence of silk fibroin in wound healing. Clinical research focusing on fibroin dressings is also promising. These properties make silk fibroin a remarkable natural material for creating innovative, simple, and effective dressings for skin wound healing. In this review, we summarise the application of silk fibroin biomaterials as wound dressings in full-thickness, burn, and diabetic wounds in preclinical and clinical settings.


Subject(s)
Burns , Fibroins , Animals , Humans , Fibroins/pharmacology , Fibroins/metabolism , Biocompatible Materials/pharmacology , Biocompatible Materials/therapeutic use , Biocompatible Materials/metabolism , Silk/metabolism , Wound Healing , Skin/metabolism
5.
Int J Mol Sci ; 23(11)2022 May 27.
Article in English | MEDLINE | ID: mdl-35682739

ABSTRACT

Evidence suggests that microbiota-derived metabolites, including short-chain fatty acids (SCFAs) and trimethylamine-oxide (TMAO), affect the course of diabetic multiorgan pathology. We hypothesized that diabetes activates the intestinal renin-angiotensin system (RAS), contributing to gut pathology. Twelve-week-old male rats were divided into three groups: controls, diabetic (streptozotocin-induced) and diabetic treated with enalapril. Histological examination and RT-qPCR were performed to evaluate morphology and RAS expression in the jejunum and the colon. SCFA and TMAO concentrations in stools, portal and systemic blood were evaluated. In comparison to the controls, the diabetic rats showed hyperplastic changes in jejunal and colonic mucosa, increased plasma SCFA, and slightly increased plasma TMAO. The size of the changes was smaller in enalapril-treated rats. Diabetic rats had a lower expression of Mas receptor (MasR) and angiotensinogen in the jejunum whereas, in the colon, the expression of MasR and renin was greater in diabetic rats. Enalapril-treated rats had a lower expression of MasR in the colon. The expression of AT1a, AT1b, and AT2 receptors was similar between groups. In conclusion, diabetes produces morphological changes in the intestines, increases plasma SCFA, and alters the expression of renin and MasR. These alterations were reduced in enalapril-treated rats. Future studies need to evaluate the clinical significance of intestinal pathology in diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Renin-Angiotensin System , Animals , Diabetes Mellitus, Experimental/drug therapy , Enalapril/metabolism , Enalapril/pharmacology , Male , Rats , Renin/metabolism , Streptozocin
6.
Pharmaceutics ; 14(6)2022 Jun 17.
Article in English | MEDLINE | ID: mdl-35745862

ABSTRACT

Wound healing is a complex biological process [...].

8.
Life (Basel) ; 13(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36676019

ABSTRACT

Impaired wound healing affects hundreds of million people around the world; therefore, chronic wounds are a major problem not only for the patient, but also for already overloaded healthcare systems. Chronic wounds are always very susceptible to infections. Billions of dollars are spent to discover new antibiotics as quickly as possible; however, bacterial resistance against antibiotics is rising even faster. For this reason, a complete shift of the antibacterial treatment paradigm is necessary. The development of technology has allowed us to rediscover well-known agents presenting antimicrobial properties with a better outcome. In this context, silver nanoparticles are a promising candidate for use in such therapy. Silver has many useful properties that can be used in the treatment of chronic wounds, such as anti-bacterial, anti-inflammatory, and anti-oxidative properties. In the form of nanoparticles, silver agents can work even more effectively and can be more easily incorporated into various dressings. Silver-based dressings are already commercially available; however, innovative combinations are still being discovered and very promising results have been described. In this review article, the authors focused on describing experimental and clinical studies exploring dressings containing either silver or silver nanoparticles, the results of which have been published in recent years.

9.
Article in English | MEDLINE | ID: mdl-34886043

ABSTRACT

In competitive athletes, the differential diagnosis between nonpathological changes in cardiac morphology associated with training (commonly referred to as "athlete's heart") and certain cardiac diseases with the potential for sudden death is an important and not uncommon clinical problem. The use of noninvasive, fast, and cheap analytical techniques can help in making diagnostic differentiation and planning subsequent clinical strategies. Recent studies have demonstrated the role of gut microbiota and their metabolites in the onset and the development of cardiovascular diseases. Trimethylamine (TMA), a gut bacteria metabolite consisting of carnitine and choline, has recently emerged as a potentially toxic molecule to the circulatory system. The present work aims to develop a simple and cost-effective capillary electrophoresis-based method for the determination of TMA in biological samples. Analytical characteristics of the proposed method were evaluated through the study of its linearity (R2 > 0.9950) and the limit of detection and quantification (LOD = 1.2 µg/mL; LOQ = 3.6 µg/mL). The method shows great potential in high-throughput screening applications for TMA analysis in biological samples as a novel potential biomarker of cardiovascular diseases. The proposed electrophoretic method for the determination of TMA in biological samples from patients with cardiac disease is now in progress.


Subject(s)
Cardiovascular Diseases , Gastrointestinal Microbiome , Biomarkers , Cardiovascular Diseases/diagnosis , Humans , Methylamines
10.
Pharmaceutics ; 13(12)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34959311

ABSTRACT

Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of tissue engineering and regenerative medicine is to develop a matrix or scaffold system that mimics the structure and function of native tissue. Keratin biomaterials derived from wool, hair, and bristle have been the subjects of active research in the context of tissue regeneration for over a decade. Keratin derivatives, which can be either soluble or insoluble, are utilized as wound dressings since keratins are dynamically up-regulated and needed in skin wound healing. Tissue biocompatibility, biodegradability, mechanical durability, and natural abundance are only a few of the keratin biomaterials' properties, making them excellent wound dressing materials to treat acute and chronic wounds. Several experimental and pre-clinical studies described the beneficial effects of the keratin-based wound dressing in faster wound healing. This review focuses exclusively on the biomedical application of a different type of keratin biomaterials as a wound dressing in pre-clinical and clinical conditions.

11.
J Hypertens ; 39(9): 1790-1799, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34397627

ABSTRACT

OBJECTIVES: Research suggests reciprocal crosstalk between the host and gut bacteria. This study evaluated the interaction between gut microbiota and arterial blood pressure (BP) in rats. METHODS: Continuous telemetry recordings of BP were started in 7-week-old normotensive Wistar--Kyoto rats (WKY) and spontaneously hypertensive rats (SHR). Two weeks later, half of the WKY and SHR were subjected to cross-transplantation of fecal matter, with stools harvested from either WKY or SHR and BP measurements until the age of 14 weeks. The composition of gut bacteria was assessed through analysis of the bacterial 16S ribosomal RNA gene sequence. The concentration of microbiota-derived metabolites was evaluated using HPLC-MS. RESULTS: There was a significant difference between WKY and SHR in the composition of gut bacteria at the start and end of the study. This was accompanied by significant histological differences in the colon. SHR, but not WKY, showed a gradual increase in BP throughout the experiment. For both WKY and SHR, there was no significant difference in BP or metabolic parameters between animals receiving fecal transplantation from either SHR or WKY. CONCLUSION: Genetically induced hypertension in SHR is associated with alterations in the composition of gut bacteria and histological morphology of the colon. An inter-strain fecal transplant does not affect BP and does not produce long-term changes in gut bacteria composition. We propose that the impact of the host genotype and/or phenotype on the gut bacteria may be greater than the impact of the gut bacteria on the host BP.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Animals , Blood Pressure , Hypertension/genetics , Phenotype , Rats , Rats, Inbred SHR
12.
Molecules ; 26(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925737

ABSTRACT

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


Subject(s)
Keratins/chemistry , Skin/drug effects , Tissue Engineering , Wound Healing/drug effects , Animals , Bandages , Cell Proliferation/drug effects , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Endorphins/chemistry , Endorphins/pharmacology , Humans , Keratins/pharmacology , Macrophages/drug effects , Mice , Mice, Inbred NOD , Tissue Scaffolds/chemistry
13.
Pharmaceutics ; 13(1)2020 Dec 26.
Article in English | MEDLINE | ID: mdl-33375279

ABSTRACT

Recently, a well-known anti-alcohol agent, disulfiram (DSF), has gain much interest, as it was found to be effective in the treatment of cocaine abusers, thus also giving hope for patients addicted to opioids and other illicit drugs. Therefore, this study was aimed to investigate the possible outcome that might occur within the subacute co-administration of both morphine (MRF) and DSF in rats, but in the absence of ethanol challenge. As observed, intraperitoneal DSF dose-dependently enhanced MRF-mediated analgesia with the maximal efficacy at a dose of 100 mg/kg. Furthermore, MRF-induced tolerance and aggressive behavior were significantly reduced by DSF (100 mg/kg, i.p.) in comparison to MRF solely. Nonetheless, significant blood biochemical markers of hepatotoxicity were found (i.e., alteration in the levels of glutathione, blood urea nitrogen, etc.), following a combination of both drugs. Likewise, histological analysis of liver tissue revealed severe changes in the group of DSF + MRF, which includes swelling, cell death, damage to certain vessels, and hemorrhages into the liver parenchyma. Our findings indicate that DSF should be used with extreme caution, especially within the course of subacute concomitant use with MRF, as several possible side effects may take place.

14.
Elife ; 92020 06 08.
Article in English | MEDLINE | ID: mdl-32510330

ABSTRACT

Trimethylamine-oxide (TMAO) is present in seafood which is considered to be beneficial for health. Deep-water animals accumulate TMAO to protect proteins, such as lactate dehydrogenase (LDH), against hydrostatic pressure stress (HPS). We hypothesized that TMAO exerts beneficial effects on the circulatory system and protects cardiac LDH exposed to HPS produced by the contracting heart. Male, Sprague-Dawley and Spontaneously-Hypertensive-Heart-Failure (SHHF) rats were treated orally with either water (control) or TMAO. In vitro, LDH with or without TMAO was exposed to HPS and was evaluated using fluorescence correlation spectroscopy. TMAO-treated rats showed higher diuresis and natriuresis, lower arterial pressure and plasma NT-proBNP. Survival in SHHF-control was 66% vs 100% in SHHF-TMAO. In vitro, exposure of LDH to HPS with or without TMAO did not affect protein structure. In conclusion, TMAO reduced mortality in SHHF, which was associated with diuretic, natriuretic and hypotensive effects. HPS and TMAO did not affect LDH protein structure.


Heart failure is a common cause of death in industrialized countries with aging populations. Japan, however, has lower rates of heart failure and fewer deaths linked to this disease than the United States or Europe, despite having the highest proportion of elderly people in the world. Dietary differences between these regions may explain the lower rate of heart failure in Japan. The Japanese diet is rich in seafood, which contains nutrients that promote heart health, such as omega-3 fatty acids. Seafood also contains other compounds, including trimethylamine oxide (TMAO). Fish that live in deep waters undergo high pressures, which can damage their proteins, but TMAO seems to protect the proteins from harm. In humans, eating seafood increases TMAO levels in the blood and urine, but it is unclear what effects this has on heart health. Increased levels of TMAO in the blood are associated with cardiovascular diseases, but scientists are not sure whether TMAO itself harms the heart. A toxic byproduct of gut bacteria called TMA is converted in TMAO in the body, so it is possible that TMA rather than TMAO is to blame. To assess the effects of dietary TMAO on heart failure, Gawrys-Kopczynska et al. fed the compound to healthy rats and rats with heart failure for one year. TMAO had no effects on the healthy rats. Of the rats with heart failure that were fed TMAO, all of them survived the year, while one third of rats with heart failure that were not fed TMAO died. TMAO-treated rats with heart failure had lower blood pressure and urinated more than untreated rats with the condition. The experiments suggest that dietary TMAO may mimic the effects of heart failure treatments, which remove excess water and salt and lower pressure on the heart. More studies are needed to confirm whether TMAO has this same effect on humans.


Subject(s)
Diuresis/drug effects , Heart Failure/drug therapy , Methylamines/chemistry , Methylamines/pharmacology , Seafood/analysis , Angiotensins/genetics , Angiotensins/metabolism , Animals , Gene Expression Regulation/drug effects , Kidney/drug effects , Male , Methylamines/administration & dosage , Microfluidic Analytical Techniques , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/physiology , Random Allocation , Rats , Rats, Sprague-Dawley , Receptor, Angiotensin, Type 1/genetics , Receptor, Angiotensin, Type 1/metabolism , Receptor, Angiotensin, Type 2/genetics , Receptor, Angiotensin, Type 2/metabolism , Temperature
15.
Open Med (Wars) ; 15: 249-253, 2020.
Article in English | MEDLINE | ID: mdl-32292820

ABSTRACT

Three-dimensional (3D) cell cultures were created with the use of fur keratin associated proteins (F-KAPs) as scaffolds. The procedure of preparation F-KAP involves combinations of chemical activation and enzymatic digestion. The best result in porosity and heterogeneity of F-KAP surface was received during pepsin digestion. The F-KAP had a stable structure, no changes were observed after heat treatment, shaking and washing. The 0.15-0.5 mm fraction had positive effect for formation of 3D scaffolds and cell culturing. Living rat mesenchymal cells on the F-KAP with no abnormal morphology were observed by SEM during 32 days of cell culturing.

16.
J Gerontol A Biol Sci Med Sci ; 75(7): 1276-1283, 2020 06 18.
Article in English | MEDLINE | ID: mdl-31411319

ABSTRACT

It has been suggested that trimethylamine oxide (TMAO), a liver oxygenation product of gut bacteria-produced trimethylamine (TMA), is a marker of cardiovascular risk. However, mechanisms of the increase and biological effects of TMAO are obscure. Furthermore, the potential role of TMAO precursor, that is TMA, has not been investigated. We evaluated the effect of age, a cardiovascular risk factor, on plasma levels of TMA and TMAO, gut bacteria composition, gut-to-blood penetration of TMA, histological and hemodynamic parameters in 3-month-old and 18-month-old, male, Sprague-Dawley and Wistar-Kyoto rats. Cytotoxicity of TMA and TMAO was studied in human vascular smooth muscle cells. Older rats showed significantly different gut bacteria composition, a significantly higher gut-to-blood TMA penetration, and morphological and hemodynamic alterations in intestines. In vitro, TMA at concentration of 500 µmol/L (2-fold higher than in portal blood) decreased human vascular smooth muscle cells viability. In contrast, TMAO at 1,000-fold higher concentration than physiological one had no effect on human vascular smooth muscle cells viability. In conclusion, older rats show higher plasma level of TMA due to a "leaky gut". TMA but not TMAO affects human vascular smooth muscle cells viability. We propose that TMA but not TMAO may be a marker and mediator of cardiovascular risk.


Subject(s)
Cardiovascular Diseases/blood , Gastrointestinal Microbiome/physiology , Methylamines/blood , Myocytes, Smooth Muscle/drug effects , Age Factors , Animals , Cell Culture Techniques , Cell Survival/drug effects , Humans , Male , Methylamines/pharmacology , Myocytes, Smooth Muscle/pathology , Rats , Rats, Inbred WKY , Rats, Sprague-Dawley , Risk Factors
17.
J Tissue Eng Regen Med ; 14(2): 334-346, 2020 02.
Article in English | MEDLINE | ID: mdl-31825159

ABSTRACT

Keratin is a cytoskeletal scaffolding protein essential for wound healing and tissue recovery. The aim of the study was to evaluate the potential role of insoluble fur keratin-derived powder containing silver nanoparticles (FKDP-AgNP) in the allogenic full-thickness surgical skin wound model in diabetic mice. The scanning electron microscopy image evidenced that the keratin surface is covered by a single layer of silver nanoparticles. Data obtained from dynamic light scattering and micellar electrokinetic chromatography showed three fractions of silver nanoparticles with an average diameter of 130, 22.5, and 5 nm. Microbiologic results revealed that the designed insoluble FKDP-AgNP dressing to some extent inhibit the growth of Escherichia coli and Staphylococcus aureus. In vitro assays showed that the FKDP-AgNP dressing did not inhibit fibroblast growth or induce hemolysis. In vivo studies using a diabetic mice model confirmed biocompatible properties of the insoluble keratin dressings. FKDP-AgNP significantly accelerated wound closure and epithelization at Days 5 and 8 (p < .05) when compared with controls. Histological examination of the inflammatory response documented that FKDP-AgNP-treated wounds contained predominantly macrophages, whereas their untreated variants showed mixed cell infiltrates rich in neutrophils. Wound inflammatory response based on macrophages favors tissue remodeling and healing. In conclusion, the investigated FKDP-AgNP dressing consisting of an insoluble fraction of keratin, which is biocompatible, significantly accelerated wound healing in a diabetic mouse model.


Subject(s)
Bandages , Biocompatible Materials/chemistry , Diabetes Mellitus, Experimental/metabolism , Keratins/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Wound Healing/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Cell Movement , Cell Proliferation , Cell Survival , Colloids/chemistry , Cytokines/metabolism , Escherichia coli , Inflammation , Kinetics , Light , Male , Mice , Mice, Inbred C57BL , Microbial Sensitivity Tests , NIH 3T3 Cells , Signal Transduction , Skin/pathology , Staphylococcus aureus
18.
Exp Physiol ; 104(8): 1226-1236, 2019 08.
Article in English | MEDLINE | ID: mdl-31243807

ABSTRACT

NEW FINDINGS: What is the central question of this study? 'Leaky gut' has been found in intestinal and extra-intestinal diseases. However, functional evaluation of intestinal permeability is not widely used as a diagnostic marker, possibly owing to significant limitations of currently used permeability assays. There is an unmet need for development of a new, non-invasive test to assess intestinal function. What is the main finding and its importance? We show that an increased blood-to-stool ratio of the concentration of gut bacteria-produced short-chain fatty acids may be used as a marker of gut permeability. Our findings lay the groundwork for establishing a new, non-invasive, risk-free diagnostic tool in diseases associated with intestinal barrier malfunction, such as inflammatory bowel disease. ABSTRACT: Intestinal diseases, such as inflammatory bowel disease (IBD), are characterized by an impaired gut-blood barrier commonly referred to as 'leaky gut'. Therefore, functional evaluation of the gut-blood barrier is a promising diagnostic marker. We hypothesized that short-chain fatty acids (SCFAs) produced by gut bacteria might serve as a marker in IBD. Animal experiments were performed on male Sprague-Dawley rats with acetic acid-induced colitis and in sham control animals. The gut-blood barrier permeability was determined by assessing the ratios of the following: (i) portal blood concentration of SCFAs (Cp ) to faecal concentration of SCFAs (Cf ); (ii) systemic blood concentration of SCFAs (Cs ) to faecal concentration of SCFAs (Cf ); and (iii) Cp and Cs of fluorescein isothiocyanate (FITC)-dextran administered into the colon. As a clinical study, we evaluated Cs , Cf and the Cs /Cf ratio of SCFAs in six paediatric patients with IBD, assessed as mild/moderate/severe by the Paediatric Ulcerative Colitis Activity Index (PUCAI) and the Paediatric Crohn's Disease Activity Index (PCDAI) at the time of sample collection, and nine age-matched healthy control subjects. Rats with histologically confirmed IBD had significantly increased ratios of Cp /Cf and Cs /Cf for SCFAs. This was positively correlated with the plasma FITC-dextran concentration. Likewise, IBD patients showed a significantly higher Cs /Cf ratio for SCFAs, including acetic, valeric, isocaproic, caproic and propionic acids, in comparison to control subjects. In conclusion, in the rats and in paediatric patients with IBD we found an increased blood-to-stool ratio of SCFAs, suggesting an increased gut-to-blood penetration of SCFAs. These findings pave the way for a new, non-invasive diagnostic tool in IBD and other diseases accompanied by intestinal barrier malfunction.


Subject(s)
Biomarkers/metabolism , Fatty Acids, Volatile/metabolism , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Intestines/physiopathology , Adolescent , Animals , Child , Child, Preschool , Feces , Female , Humans , Male , Permeability , Rats , Rats, Sprague-Dawley
19.
Electrophoresis ; 40(11): 1540-1549, 2019 06.
Article in English | MEDLINE | ID: mdl-30838663

ABSTRACT

In this study, GC-MS- and MEKC-based methods for determination of caffeine (CAF) in preworkout supplements were developed and validated. The proposed protocols utilized minimal sample preparation (simple dilution and syringe filtration). The developed methods achieved satisfactory validation parameters, i.e. good linearity (R2 > 0.9988 and R2 > 0.9985 for GC-MS- and MEKC-based method, respectively), satisfactory intra- and interaccuracy (within 92.6-100.7% for method utilizing GC-MS and 92.1-110.3% for protocol based on MEKC) and precision (CV < 15.9% and CV < 6.3% for GC-MS- and MEKC-based method, respectively) and recovery (within 100.1-100.8% for method utilizing GC-MS and 101.5-106.2% for protocol based on MEKC). The LOD was 0.03 and 3 µg/mL for method utilizing GC-MS and MEKC, respectively. The CAF concentrations determined by GC-MS- and MEKC-based methods were found to be in the range of 8.53-11.23 and 8.20-11.61 µg/mL, respectively. Taking into consideration information on the labels, the investigated supplements were found to contain from 110.0 to 167.3% of the declared CAF content, which confirmed the literature reports on incompatibility of the declared product compositions with real ones. Nevertheless, the consumption of examined supplements as recommended by producers did not lead to exceeding the CAF safe limit of 400 mg per day. Additionally, the MEKC-based method allowed for detection and identification of vitamin B3 and B6 in all of the investigated supplement samples, which demonstrated that MEKC-based protocols may be an appropriate assays for simultaneous determination of CAF and vitamins.


Subject(s)
Caffeine/analysis , Chromatography, Micellar Electrokinetic Capillary/methods , Gas Chromatography-Mass Spectrometry/methods , Vitamins/analysis , Dietary Supplements/analysis , Lod Score , Niacinamide/analysis , Vitamin B 6/analysis
20.
Nutrients ; 11(3)2019 Mar 11.
Article in English | MEDLINE | ID: mdl-30862081

ABSTRACT

Recent evidence suggests that tryptophan, an essential amino acid, may exert biological effects by means of tryptophan-derived gut bacteria products. We evaluated the potential contribution of tryptophan-derived bacterial metabolites to body weight gain. The study comprised three experimental series performed on separate groups of male, Sprague-Dawley rats: (i) rats on standard laboratory diet treated with water solution of neomycin, an antibiotic, or tap water (controls-1); (ii) rats on standard diet (controls-2) or tryptophan-high (TH) or tryptophan-free (TF) diet; and (iii) rats treated with indole-3-propionic acid (I3P), a bacterial metabolite of tryptophan, or a vehicle (controls-3). (i) Rats treated with neomycin showed a significantly higher weight gain but lower stool and blood concentration of I3P than controls-1. (ii) The TH group showed significantly smaller increases in body weight but higher stool and plasma concentration of I3P than controls-2. In contrast, the TF group showed a decrease in body weight, decreased total serum protein and a significant increase in urine output. (iii) Rats treated with I3P showed significantly smaller weight gain than controls-3. Our study suggests that I3P, a gut bacteria metabolite of tryptophan, contributes to changes in body weight gain produced by antibiotics and tryptophan-rich diet.


Subject(s)
Indoles/pharmacology , Neomycin/pharmacology , Propionates/pharmacology , Tryptophan/metabolism , Animals , Indoles/metabolism , Male , Propionates/metabolism , Protein Synthesis Inhibitors/pharmacology , Rats , Rats, Sprague-Dawley , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL