Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 597
Filter
1.
Heliyon ; 10(16): e36014, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39247383

ABSTRACT

Background: Respiratory infections are common in children and can quickly deteriorate, necessitating vigilant nursing care. Simulation training provides a valuable tool for nursing students to learn how to manage children with respiratory infections. Peer tutoring has demonstrated benefits, including the creation of a safe, supportive learning environment and the perception of peer tutors as beneficial role models. This study aimed to develop a simulation education program for the care of children with respiratory infections, involving peer tutoring among nursing students, and to assess its effectiveness. Methods: This mixed-methods study, conducted between July and December 2022, utilized surveys to gather both quantitative and qualitative data. A peer tutoring-based simulation education program for providing care to children with respiratory infections was developed specifically for nursing students. The study was implemented with 49 nursing students from a South Korean university (25 in the experimental group and 24 in the control group). The students' self-efficacy, disposition towards critical thinking, problem-solving ability, and satisfaction with practice were evaluated and analyzed using the unpaired t-test, the chi-square test, and repeated-measures analysis of variance. The learning experiences of the students in the experimental group were further examined using qualitative content analysis. Results: The experimental group demonstrated greater growth in self-efficacy and satisfaction with practice than the control group. However, no significant difference was observed between the experimental and control groups in terms of changes in disposition towards critical thinking and problem-solving ability. From the nursing students who participated in the implementation, three categories were identified: "enhancement of learning," "psychologically secure environment," and "novel experience." Conclusions: The peer tutoring-based simulation education focused on caring for children with respiratory infections effectively improved the self-efficacy and satisfaction of nursing students. This method will be utilized to enhance the learning experience of nursing students in the field of pediatric respiratory care.

2.
Angew Chem Int Ed Engl ; : e202415700, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39248441

ABSTRACT

One-dimensional (1D) magnets are of great interest owing to their intriguing quantum phenomena and potential application in quantum computing. We successfully synthesized an ideal antiferromagnetic spin S = 5/2 chain compound [H2(4,4'-bpy)](H3O)2Fe2F10 (4,4'-bpy = 4,4'-bipyridyl) 1, using a single-step low-temperature hydrothermal method under conditions that favors the protonation of the bulky bidentate ligand 4,4'-bpy. Compound 1 consists of well-separated (Fe3+-F-)¥ chains with a large Fe-F-Fe angle of 174.8°. Both magnetic susceptibility and specific heat measurements show that 1 does not undergo a magnetic long-range ordering down to 0.5 K, despite the strong Fe-F-Fe intrachain spin exchange J with J/kB = -16.2(1) K. This indicates a negligibly weak interchain spin exchange J'. The J'/J value estimated for 1 is extremely small (< 2.8×10-6), smaller than those reported for all other S = 5/2 chain magnets. Our hydrothermal synthesis incorporates both [H2(4,4'-bpy)]2+ and (H3O)+ cations into the crystal lattice with numerous hydrogen bonds, hence effectively separating the (Fe3+-F-)¥ spin chains. This single-step hydrothermal synthesis under conditions favoring the protonation of bulky bidentate ligands offers an effective synthetic strategy to prepare well-separated 1D spin chain systems of magnetic ions with various spin values.

3.
Article in English | MEDLINE | ID: mdl-39089448

ABSTRACT

OBJECTIVE: Segmenting the aorta into zones based on anatomical landmarks is a current trend to better understand interventions for aortic dissection or aneurysm. However, comprehensive reference values for aortic zones are lacking. The aim of this study was to establish reference values for aortic size using a fully automated deep learning based segmentation method. METHODS: This retrospective study included 704 healthy adults (mean age 50.6 ± 7.5 years; 407;57.8%] males) who underwent contrast enhanced chest computed tomography (CT) for health screening. A convolutional neural network (CNN) was trained and applied on 3D CT images for automatic segmentation of the aorta based on the Society for Vascular Surgery and Society of Thoracic Surgeons classification. The CNN generated masks were reviewed and corrected by expert cardiac radiologists. RESULTS: Aortic size was significantly larger in males than in females across all zones (zones 0 - 8, all p < .001). The aortic size in each zone increased with age, by approximately 1 mm per 10 years of age, e.g., 25.4, 26.7, 27.5, 28.8, and 29.8 mm at zone 2 in men in the age ranges of 30 - 39, 40 - 49, 50 - 59, 60 - 69, and ≥ 70 years, respectively (all p < .001). CONCLUSION: The deep learning algorithm provided reliable values for aortic size in each zone, with automatic masks comparable to manually corrected ones. Aortic size was larger in males and increased with age. These findings have clinical implications for the detection of aortic aneurysms and other aortic diseases.

4.
Sci Rep ; 14(1): 17994, 2024 08 03.
Article in English | MEDLINE | ID: mdl-39097625

ABSTRACT

CD73 is a cell-surface ectoenzyme that hydrolyzes the conversion of extracellular adenosine monophosphate to adenosine, which in turn can promote resistance to immune checkpoint blockade therapy. Immune response may therefore be improved by targeting tumor CD73, and this possibility underlines the need to non-invasively assess tumor CD73 level. In this study, we developed a cysteine site-specific 89Zr-labeled anti-CD73 (89Zr-CD73) IgG immuno-PET technique that can image tumor CD73 expression in living bodies. Anti-CD73 IgG was reduced with tris(2-carboxyethyl)phosphine, underwent sulfohydryl moiety-specific conjugation with deferoxamine-maleimide, and was radiolabeled with 89Zr. CT26 mouse colon cancer cells, CT26/CD73 cells engineered to constitutively overexpress CD73, and 4T1.2 mouse breast cancer cells underwent cell binding assays and western blotting. Balb/c nude mice bearing tumors underwent 89Zr-CD73 IgG PET imaging and biodistribution studies. 89Zr-CD73 IgG showed 20-fold higher binding to overexpressing CT26/CD73 cells compared to low-expressing CT26 cells, and moderate expressing 4T1.2 cells showed uptake that was 38.9 ± 1.51% of CT26/CD73 cells. Uptake was dramatically suppressed by excess unlabeled antibody. CD73 content proportionately increased in CT26 and CT26/CD73 cell mixtures was associated with linear increases in 89Zr-CD73 IgG uptake. 89Zr-CD73 IgG PET/CT displayed clear accumulation in CT26/CD73 tumors with greater uptake compared to CT26 tumors (3.13 ± 1.70%ID/g vs. 1.27 ± 0.31%ID/g at 8 days; P = 0.04). Specificity was further supported by low CT26/CD73 tumor-to-blood ratio of 89Zr-isotype-IgG compared to 89Zr-CD73 IgG (0.48 ± 0.08 vs. 2.68 ± 0.52 at 4 days and 0.53 ± 0.07 vs. 4.81 ± 1.02 at 8 days; both P < 0.001). Immunoblotting and immunohistochemistry confirmed strong CD73 expression in CT26/CD73 tumors and low expression in CT26 tumors. 4T1.2 tumor mice also showed clear 89Zr-CD73 IgG accumulation at 8 days (3.75 ± 0.70%ID/g) with high tumor-to-blood ratio compared to 89Zr-isotype-IgG (4.91 ± 1.74 vs. 1.20 ± 0.28; P < 0.005). 89Zr-CD73 IgG specifically targeted CD73 on high expressing cancer cells in vitro and tumors in vivo. Thus, 89Zr-CD73 IgG immuno-PET may be useful for the non-invasive monitoring of CD73 expression in tumors of living subjects.


Subject(s)
5'-Nucleotidase , Colonic Neoplasms , Cysteine , Positron-Emission Tomography , Zirconium , Animals , 5'-Nucleotidase/metabolism , Zirconium/chemistry , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/metabolism , Colonic Neoplasms/immunology , Colonic Neoplasms/pathology , Mice , Cell Line, Tumor , Positron-Emission Tomography/methods , Cysteine/metabolism , Humans , Radioisotopes , Female , Mice, Inbred BALB C , Tissue Distribution , Mice, Nude , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism
5.
ACS Appl Mater Interfaces ; 16(29): 37613-37622, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39007413

ABSTRACT

Biofilms, intricate microbial communities entrenched in extracellular polymeric substance (EPS) matrices, pose formidable challenges in infectious disease treatment, especially in the context of interkingdom biofilms prevalent in the oral environment. This study investigates the potential of carvacrol-loaded biodegradable nanoemulsions (NEs) with systematically varied surface charges─cationic guanidinium (GMT-NE) and anionic carboxylate (CMT-NE). Zeta potentials of +25 mV (GMT-NE) and -33 mV (CMT-NE) underscore successful nanoemulsion fabrication (∼250 nm). Fluorescent labeling and dynamic tracking across three dimensions expose GMT-NE's superior diffusion into oral biofilms, yielding a robust antimicrobial effect with 99.99% killing for both streptococcal and Candida species and marked reductions in bacterial cell viability compared to CMT-NE (∼4-log reduction). Oral mucosa tissue cultures affirm the biocompatibility of both NEs with no morphological or structural changes, showcasing their potential for combating intractable biofilm infections in oral environment. This study advances our understanding of NE surface charges and their interactions within interkingdom biofilms, providing insights crucial for addressing complex infections involving bacteria and fungi in the demanding oral context.


Subject(s)
Biofilms , Candida , Cymenes , Emulsions , Biofilms/drug effects , Cymenes/chemistry , Cymenes/pharmacology , Emulsions/chemistry , Candida/drug effects , Candida/physiology , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/chemistry , Polymers/pharmacology , Microbial Sensitivity Tests , Nanoparticles/chemistry , Surface Properties , Mouth Mucosa/microbiology , Mouth Mucosa/drug effects
6.
Inorg Chem ; 63(31): 14354-14365, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39056108

ABSTRACT

A series of analogous chain selenite chlorides Ba2M(SeO3)2Cl2 (M = Cu 1, Ni 2, Co 3, Mn 4) and Pb2Cu(SeO3)2Cl2 5 with tunable spin S from S = 1/2 to S = 5/2 have been hydrothermally synthesized and characterized. These analogues crystallized in the orthorhombic Pnnm space group (monoclinic P21/n space group for 5) all containing M2+-SeO3-M2+ spin chains, which are further separated by the Ba2+ ions (Pb2+ for 5). The magnetic susceptibility results of 1, 2, and 5 show broad maxima around 80.0, 18.9, and 78.0 K, respectively, indicating good one-dimensional (1D) magnetism. Meanwhile, no long-range order (LRO) is observed down to 2 K for both 1 and 5, while the isostructural compounds 2, 3, and 4 exhibit LRO at 3.4 K, 10.8 K, and 5.7 K, respectively, which are further confirmed by the heat capacity and electron spin resonance results, as well as the observed spin-flop transitions in the M-H curves measured at 2 K below TN. The magnetizations of 1-5 at 7 T are still far from saturation. In addition, thermal stability and FT-IR and UV-vis-NIR spectroscopy of 1-5 are reported.

7.
Small ; : e2402292, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38864236

ABSTRACT

Tailoring the microstructure of magnetic microparticles is of vital importance for their applications. Spiky magnetic particles, such as those made from sunflower pollens, have shown promise in single cell treatment and biofilm removal. Synthetic methods that can replicate or extend the functionality of such spiky particles would be advantageous for their widespread utilization. In this work, a wet-chemical method is introduced for spiky magnetic particles that are templated from microrod-stabilized Pickering emulsions. The spiky morphology is generated by the upright attachment of silica microrods at the oil-water interface of oil droplets. Spiky magnetic microparticles with control over the length of the spikes are obtained by dispersing hydrophobic magnetic nanoparticles in the oil phase and photopolymerizing the monomer. The spiky morphology dramatically enhances colloidal stability of these particles in high ionic strength solutions and physiologic media such as human saliva and saline-based biofilm suspension. To demonstrate their utility, the spiky magnetic particles are applied for magnetically controlled removal of oral biofilms and retrieval of bacteria for diagnostic sampling. This method expands the toolbox for engineering microparticle morphology and could promote the fabrication of functional magnetic microrobots.

8.
PLoS One ; 19(6): e0303986, 2024.
Article in English | MEDLINE | ID: mdl-38843302

ABSTRACT

Research on cardiovascular diseases using CT-derived strain is gaining momentum, yet there is a paucity of information regarding reference standard values beyond echocardiography, particularly in cardiac chambers other than the left ventricle (LV). We aimed to compile CT-derived strain values from the four cardiac chambers in healthy adults and assess the impact of age and sex on myocardial strains. This study included 101 (mean age: 55.2 ± 9.0 years, 55.4% men) consecutive healthy individuals who underwent multiphase cardiac CT. CT-derived cardiac strains, including LV global and segmental longitudinal, circumferential, and transverse strains, left atrial (LA), right atrial (RA), and right ventricle (RV) strains were measured by the commercially available software. Strain values were classified and compared by their age and sex. The normal range of CT-derived LV global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) were -20.2 ± 2.7%, -27.9 ± 4.1%, and 49.4 ± 12.1%, respectively. For LA, reservoir strain, pump strain, and conduit strain were 28.6 ± 8.5%, 13.2 ± 6.4%, and 15.5 ± 8.6%, respectively. The GLS of RA and RV were 27.9 ± 10.9% and -22.0 ± 5.7%, respectively. The absolute values of GLS of RA and RV of women were higher than that in men (32.4 ± 11.4 vs. 24.3 ± 9.1 and -25.2 ± 4.7 vs. -19.4 ± 5.0, respectively; p<0.001, both). Measurement of CT-derived strain in four cardiac chambers is feasible. The reference ranges of CT strains in four cardiac chambers can be used for future studies of various cardiac diseases using the cardiac strains.


Subject(s)
Heart Ventricles , Tomography, X-Ray Computed , Humans , Male , Female , Middle Aged , Reference Values , Tomography, X-Ray Computed/methods , Heart Ventricles/diagnostic imaging , Aged , Adult , Heart Atria/diagnostic imaging
9.
Nat Commun ; 15(1): 5016, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38876998

ABSTRACT

Periodontitis affects billions of people worldwide. To address relationships of periodontal niche cell types and microbes in periodontitis, we generated an integrated single-cell RNA sequencing (scRNAseq) atlas of human periodontium (34-sample, 105918-cell), including sulcular and junctional keratinocytes (SK/JKs). SK/JKs displayed altered differentiation states and were enriched for effector cytokines in periodontitis. Single-cell metagenomics revealed 37 bacterial species with cell-specific tropism. Fluorescence in situ hybridization detected intracellular 16 S and mRNA signals of multiple species and correlated with SK/JK proinflammatory phenotypes in situ. Cell-cell communication analysis predicted keratinocyte-specific innate and adaptive immune interactions. Highly multiplexed immunofluorescence (33-antibody) revealed peri-epithelial immune foci, with innate cells often spatially constrained around JKs. Spatial phenotyping revealed immunosuppressed JK-microniches and SK-localized tertiary lymphoid structures in periodontitis. Here, we demonstrate impacts on and predicted interactomics of SK and JK cells in health and periodontitis, which requires further investigation to support precision periodontal interventions in states of chronic inflammation.


Subject(s)
Cell Communication , Keratinocytes , Periodontitis , Single-Cell Analysis , Humans , Keratinocytes/metabolism , Keratinocytes/immunology , Periodontitis/microbiology , Periodontitis/metabolism , Periodontitis/immunology , Periodontitis/pathology , Cytokines/metabolism , Periodontium/microbiology , Periodontium/metabolism , Periodontium/pathology , Immunity, Innate , In Situ Hybridization, Fluorescence , Male , Metagenomics/methods , Bacteria/metabolism , Bacteria/genetics , Female , Adult , Adaptive Immunity
11.
Int Endod J ; 57(7): 861-871, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38761098

ABSTRACT

Microorganisms are the primary aetiological factor of apical periodontitis. The goal of endodontic treatment is to prevent and eliminate the infection by removing the microorganisms. However, microbial biofilms and the complex root canal anatomy impair the disinfection process. Effective and precise endodontic therapy could potentially be achieved using advanced multifunctional technologies that have the ability to access hard-to-reach surfaces and perform simultaneous biofilm killing, removal, and detection of microorganisms. Advances in microrobotics are providing novel therapeutic and diagnostic opportunities with high precision and efficacy to address current biofilm-related challenges in biomedicine. Concurrently, multifunctional magnetic microrobots have been developed to overcome the disinfection challenges of current approaches to disrupt, kill, and retrieve biofilms with the goal of enhancing the efficacy and precision of endodontic therapy. This article reviews the recent advances of microrobotics in healthcare and particularly advances to overcome disinfection challenges in endodontics, and provides perspectives for future research in the field.


Subject(s)
Biofilms , Disinfection , Humans , Disinfection/methods , Robotics , Endodontics/methods , Endodontics/instrumentation , Periapical Periodontitis/therapy , Periapical Periodontitis/microbiology , Root Canal Therapy/methods , Root Canal Therapy/instrumentation , Dental Pulp Cavity/microbiology
12.
Eur J Vasc Endovasc Surg ; 68(4): 444-453, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38719137

ABSTRACT

OBJECTIVE: Residual aortic dissection (AD) following DeBakey type I AD repair is associated with a high rate of adverse events that need additional intervention or surgery. This study aimed to identify clinical and early post-operative computed tomography angiography (CTA) imaging factors associated with adverse events in patients with type I AD after ascending aorta replacement. METHODS: This single centre, retrospective cohort study included consecutive patients with type I AD who underwent ascending aorta replacement from January 2011 to December 2017 and post-operative CTA within three months. The primary outcome was AD related adverse events, defined as AD related death and re-operation due to aortic aneurysm or impending rupture. The location and size of the primary intimal tears, aortic diameter, and false lumen status were evaluated. Regression analyses were performed to identify factors associated with AD related adverse events. A decision tree model was used to classify patients as high or low risk. RESULTS: Of 103 participants (55.43 ± 13.94 years; 49.5% male), 24 (23.3%) experienced AD related adverse events. In multivariable Cox regression analysis, connective tissue disease (hazard ratio [HR] 15.33; p < .001), maximum aortic diameter ≥ 40 mm (HR 4.90; p < .001), and multiple (three or more) intimal tears (HR 7.12; p < .001) were associated with AD related adverse events. The three year cumulative survival free from AD related events was lower in the high risk group with aortic diameter ≥ 40 mm and multiple intimal tears (41.7% vs. 90.9%; p < .001). CONCLUSION: Early post-operative CTA findings indicating a maximum aortic diameter ≥ 40 mm and multiple intimal tears may predict a higher risk of adverse events. These findings suggest the need for careful monitoring and more vigilant management approaches in these cases.


Subject(s)
Aortic Dissection , Computed Tomography Angiography , Humans , Male , Female , Aortic Dissection/surgery , Aortic Dissection/diagnostic imaging , Middle Aged , Retrospective Studies , Aged , Risk Factors , Blood Vessel Prosthesis Implantation/adverse effects , Blood Vessel Prosthesis Implantation/mortality , Postoperative Complications/etiology , Postoperative Complications/epidemiology , Adult , Treatment Outcome , Risk Assessment , Aortic Aneurysm/surgery , Aortic Aneurysm/diagnostic imaging , Aortic Aneurysm/mortality , Time Factors , Reoperation/statistics & numerical data
13.
J Mater Chem B ; 12(20): 4935-4944, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38683039

ABSTRACT

The oral cavity, a warm and moist environment, is prone to the proliferation of microorganisms like Candida albicans (C. albicans), which forms robust biofilms on biotic and abiotic surfaces, leading to challenging infections. These biofilms are resistant to conventional treatments due to their resilience against antimicrobials and immune responses. The dynamic nature of the oral cavity, including the salivary flow and varying surface properties, complicates the delivery of therapeutic agents. To address these challenges, we introduce dendritic microparticles engineered for enhanced adhesion to dental surfaces and effective delivery of antifungal agents and antibiofilm enzymes. These microparticles are fabricated using a water-in-oil-in-water emulsion process involving a blend of poly(lactic-co-glycolic acid) (PLGA) random copolymer (RCP) and PLGA-b-poly(ethylene glycol) (PLGA-b-PEG) block copolymer (BCP), resulting in particles with surface dendrites that exhibit strong adhesion to oral surfaces. Our study demonstrates the potential of these adhesive microparticles for oral applications. The adhesion tests on various oral surfaces, including dental resin, hydroxyapatite, tooth enamel, and mucosal tissues, reveal superior adhesion of these microparticles compared to conventional spherical ones. Furthermore, the release kinetics of nystatin from these microparticles show a sustained release pattern that can kill C. albicans. The biodegradation of these microparticles on tooth surfaces and their efficacy in preventing fungal biofilms have also been demonstrated. Our findings highlight the effectiveness of adhesive microparticles in delivering therapeutic agents within the oral cavity, offering a promising approach to combat biofilm-associated infections.


Subject(s)
Antifungal Agents , Biofilms , Candida albicans , Surface Properties , Biofilms/drug effects , Candida albicans/drug effects , Candida albicans/physiology , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Humans , Mouth/microbiology , Adhesives/chemistry , Adhesives/pharmacology , Particle Size , Polyethylene Glycols/chemistry , Drug Carriers/chemistry
14.
Comput Biol Med ; 175: 108494, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38688124

ABSTRACT

BACKGROUND & OBJECTIVE: Aortic dissection (AD) is a serious condition requiring rapid and accurate diagnosis. In this study, we aimed to improve the diagnostic accuracy of AD by presenting a novel method for aortic segmentation in computed tomography images that uses a combination of a transformer and a UNet cascade network with a Zoom-Out and Zoom-In scheme (ZOZI-seg). METHODS: The proposed method segments each compartment of the aorta, comprising the true lumen (TL), false lumen (FL), and thrombosis (TH) using a cascade strategy that captures both the global context (anatomical structure) and the local detail texture based on the dynamic patch size with ZOZI schemes. The ZOZI-seg model has a two-stage architecture using both a "3D transformer for panoptic context-awareness" and a "3D UNet for localized texture refinement." The unique ZOZI strategies for patching were demonstrated in an ablation study. The performance of our proposed ZOZI-seg model was tested using a dataset from Asan Medical Center and compared with those of existing models such as nnUNet and nnFormer. RESULTS: In terms of segmentation accuracy, our method yielded better results, with Dice similarity coefficients (DSCs) of 0.917, 0.882, and 0.630 for TL, FL, and TH, respectively. Furthermore, we indirectly compared our model with those in previous studies using an external dataset to evaluate its robustness and generalizability. CONCLUSIONS: This approach may help in the diagnosis and treatment of AD in different clinical situations and provide a strong basis for further research and clinical applications.


Subject(s)
Aortic Dissection , Tomography, X-Ray Computed , Humans , Aortic Dissection/diagnostic imaging , Tomography, X-Ray Computed/methods , Algorithms
15.
Adv Mater ; 36(29): e2314274, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38647521

ABSTRACT

A gate stack that facilitates a high-quality interface and tight electrostatic control is crucial for realizing high-performance and low-power field-effect transistors (FETs). However, when constructing conventional metal-oxide-semiconductor structures with two-dimensional (2D) transition metal dichalcogenide channels, achieving these requirements becomes challenging due to inherent difficulties in obtaining high-quality gate dielectrics through native oxidation or film deposition. Here, a gate-dielectric-less device architecture of van der Waals Schottky gated metal-semiconductor FETs (vdW-SG MESFETs) using a molybdenum disulfide (MoS2) channel and surface-oxidized metal gates such as nickel and copper is reported. Benefiting from the strong SG coupling, these MESFETs operate at remarkably low gate voltages, <0.5 V. Notably, they also exhibit Boltzmann-limited switching behavior featured by a subthreshold swing of ≈60 mV dec-1 and negligible hysteresis. These ideal FET characteristics are attributed to the formation of a Fermi-level (EF) pinning-free gate stack at the Schottky-Mott limit. Furthermore, authors experimentally and theoretically confirm that EF depinning can be achieved by suppressing both metal-induced and disorder-induced gap states at the interface between the monolithic-oxide-gapped metal gate and the MoS2 channel. This work paves a new route for designing high-performance and energy-efficient 2D electronics.

17.
Genet Epidemiol ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472164

ABSTRACT

Genome-wide association studies (GWAS) have provided an abundance of information about the genetic variants and their loci that are associated to complex traits and diseases. However, due to linkage disequilibrium (LD) and noncoding regions of loci, it remains a challenge to pinpoint the causal genes. Gene network-based approaches, paired with network diffusion methods, have been proposed to prioritize causal genes and to boost statistical power in GWAS based on the assumption that trait-associated genes are clustered in a gene network. Due to the difficulty in mapping trait-associated variants to genes in GWAS, this assumption has never been directly or rigorously tested empirically. On the other hand, whole exome sequencing (WES) data focuses on the protein-coding regions, directly identifying trait-associated genes. In this study, we tested the assumption by leveraging the recently available exome-based association statistics from the UK Biobank WES data along with two types of networks. We found that almost all trait-associated genes were significantly more proximal to each other than randomly selected genes within both networks. These results support the assumption that trait-associated genes are clustered in gene networks, which can be further leveraged to boost the power of GWAS such as by introducing less stringent p value thresholds.

19.
Korean J Radiol ; 25(4): 331-342, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528691

ABSTRACT

The Asian Society of Cardiovascular Imaging-Practical Tutorial (ASCI-PT) is an instructional initiative of the ASCI School designed to enhance educational standards. In 2021, the ASCI-PT was convened with the goal of formulating a consensus statement on the assessment of coronary stenosis and coronary plaque using coronary CT angiography (CCTA). Nineteen experts from four countries conducted thorough reviews of current guidelines and deliberated on eight key issues to refine the process and improve the clarity of reporting CCTA findings. The experts engaged in both online and on-site sessions to establish a unified agreement. This document presents a summary of the ASCI-PT 2021 deliberations and offers a comprehensive consensus statement on the evaluation of coronary stenosis and coronary plaque in CCTA.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Plaque, Atherosclerotic , Humans , Computed Tomography Angiography , Predictive Value of Tests , Coronary Stenosis/diagnostic imaging , Plaque, Atherosclerotic/diagnostic imaging , Coronary Angiography
20.
J Am Chem Soc ; 146(12): 8320-8326, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38489763

ABSTRACT

One-dimensional (1D) Heisenberg antiferromagnets are of great interest due to their intriguing quantum phenomena. However, the experimental realization of such systems with large spin S remains challenging because even weak interchain interactions induce long-range ordering. In this study, we present an ideal 1D S = 5/2 spin chain antiferromagnet achieved through a multistep topochemical route involving dehydration and rehydration. By desorbing three water molecules from (2,2'-bpy)FeF3(H2O)·2H2O (2,2'-bpy = 2,2'-bipyridyl) at 150 °C and then intercalating two water molecules at room temperature (giving (2,2'-bpy)FeF3·2H2O 1), the initially isolated FeF3ON2 octahedra combine to form corner-sharing FeF4N2 octahedral chains, which are effectively separated by organic and added water molecules. Mössbauer spectroscopy reveals significant dynamical fluctuations down to 2.7 K, despite the presence of strong intrachain interactions. Moreover, results from electron spin resonance (ESR) and heat capacity measurements indicate the absence of long-range order down to 0.5 K. This controlled topochemical dehydration/rehydration approach is further extended to (2,2'-bpy)CrF3·2H2O with S = 3/2 1D chains, thus opening the possibility of obtaining other low-dimensional spin lattices.

SELECTION OF CITATIONS
SEARCH DETAIL