Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Antioxidants (Basel) ; 13(6)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38929151

ABSTRACT

Xanthine Oxidoreductase (XOR) is a ubiquitous, essential enzyme responsible for the terminal steps of purine catabolism, ultimately producing uric acid that is eliminated by the kidneys. XOR is also a physiological source of superoxide ion, hydrogen peroxide, and nitric oxide, which can function as second messengers in the activation of various physiological pathways, as well as contribute to the development and the progression of chronic conditions including kidney diseases, which are increasing in prevalence worldwide. XOR activity can promote oxidative distress, endothelial dysfunction, and inflammation through the biological effects of reactive oxygen species; nitric oxide and uric acid are the major products of XOR activity. However, the complex relationship of these reactions in disease settings has long been debated, and the environmental influences and genetics remain largely unknown. In this review, we give an overview of the biochemistry, biology, environmental, and current clinical impact of XOR in the kidney. Finally, we highlight recent genetic studies linking XOR and risk for kidney disease, igniting enthusiasm for future biomarker development and novel therapeutic approaches targeting XOR.

2.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732511

ABSTRACT

Prenatal alcohol exposure (AE) affects cognitive development. However, it is unclear whether prenatal AE influences the metabolic health of offspring and whether postnatal AE exacerbates metabolic deterioration resulting from prenatal AE. Choline is a semi-essential nutrient that has been demonstrated to mitigate the cognitive impairment of prenatal AE. This study investigated how maternal choline supplementation (CS) may modify the metabolic health of offspring with prenatal and postnatal AE (AE/AE). C57BL/6J female mice were fed either a Lieber-DeCarli diet with 1.4% ethanol between embryonic day (E) 9.5 and E17.5 or a control diet. Choline was supplemented with 4 × concentrations versus the control throughout pregnancy. At postnatal week 7, offspring mice were exposed to 1.4% ethanol for females and 3.9% ethanol for males for 4 weeks. AE/AE increased hepatic triglyceride accumulation in male offspring only, which was normalized by prenatal CS. Prenatal CS also improved glucose tolerance compared to AE/AE animals. AE/AE suppressed hepatic gene expression of peroxisome proliferator activated receptor alpha (Ppara) and low-density lipoprotein receptor (Ldlr), which regulate fatty acid catabolism and cholesterol reuptake, respectively, in male offspring. However, these changes were not rectified by prenatal CS. In conclusion, AE/AE led to an increased risk of steatosis and was partially prevented by prenatal CS in male mice.


Subject(s)
Choline , Dietary Supplements , Ethanol , Liver , Mice, Inbred C57BL , Prenatal Exposure Delayed Effects , Animals , Female , Pregnancy , Choline/administration & dosage , Male , Liver/metabolism , Liver/drug effects , Mice , Fatty Liver/prevention & control , Fatty Liver/etiology , Triglycerides/metabolism , PPAR alpha/metabolism , Receptors, LDL/genetics , Receptors, LDL/metabolism , Glucose Intolerance/prevention & control , Lipid Metabolism/drug effects
3.
Nutrients ; 15(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36839327

ABSTRACT

Maternal obesity during pregnancy adversely impacts offspring health, predisposing them to chronic metabolic diseases characterized by insulin resistance, dysregulated macronutrient metabolism, and lipid overload, such as metabolic-associated fatty liver disease (MAFLD). Choline is a semi-essential nutrient involved in lipid and one-carbon metabolism that is compromised during MAFLD progression. Here, we investigated under high-fat (HF) obesogenic feeding how maternal choline supplementation (CS) influenced the hepatic lipidome of mouse offspring. Our results demonstrate that maternal HF+CS increased relative abundance of a subclass of phospholipids called plasmalogens in the offspring liver at both embryonic day 17.5 and after 6 weeks of postnatal HF feeding. Consistent with the role of plasmalogens as sacrificial antioxidants, HF+CS embryos were presumably protected with lower oxidative stress. After postnatal HF feeding, the maternal HF+CS male offspring also had higher relative abundance of both sphingomyelin d42:2 and its side chain, nervonic acid (FA 24:1). Nervonic acid is exclusively metabolized in the peroxisome and is tied to plasmalogen synthesis. Altogether, this study demonstrates that under the influence of obesogenic diet, maternal CS modulates the fetal and postnatal hepatic lipidome of male offspring, favoring plasmalogen synthesis, an antioxidative response that may protect the mouse liver from damages due to HF feeding.


Subject(s)
Non-alcoholic Fatty Liver Disease , Obesity, Maternal , Prenatal Exposure Delayed Effects , Humans , Pregnancy , Female , Male , Mice , Animals , Obesity/metabolism , Plasmalogens , Choline/metabolism , Obesity, Maternal/metabolism , Lipidomics , Diet, High-Fat , Liver/metabolism , Dietary Supplements , Non-alcoholic Fatty Liver Disease/metabolism , Vitamins/metabolism , Maternal Nutritional Physiological Phenomena , Prenatal Exposure Delayed Effects/metabolism
4.
Front Nutr ; 9: 841787, 2022.
Article in English | MEDLINE | ID: mdl-35165655

ABSTRACT

Maternal methyl donor supplementation during pregnancy has demonstrated lasting influence on offspring DNA methylation. However, it is unknown whether an adverse postnatal environment, such as high-fat (HF) feeding, overrides the influence of prenatal methyl donor supplementation on offspring epigenome. In this study, we examined whether maternal supplementation of choline (CS), a methyl donor, interacts with prenatal and postnatal HF feeding to alter global and site-specific DNA methylation in offspring. We fed wild-type C57BL/6J mouse dams a HF diet with or without CS throughout gestation. After weaning, the offspring were exposed to HF feeding for 6 weeks resembling a continued obesogenic environment. Our results suggest that maternal CS under the HF condition (HFCS) increased global DNA methylation and DNA methyltransferase 1 (Dnmt1) expression in both fetal liver and brain. However, during the postnatal period, HFCS offspring demonstrated lower global DNA methylation and Dnmt1 expression was unaltered in both the liver and visceral adipose tissue. Site-specific DNA methylation analysis during both fetal and postnatal periods demonstrated that HFCS offspring had higher methylation of CpGs in the promoter of Srebf1, a key mediator of de novo lipogenesis. In conclusion, the influence of maternal CS on offspring DNA methylation is specific to HF feeding status during prenatal and postnatal periods. Without continued CS during the postnatal period, global DNA methylation enhanced by prenatal CS in the offspring was overridden by postnatal HF feeding.

5.
Trends Endocrinol Metab ; 32(8): 579-593, 2021 08.
Article in English | MEDLINE | ID: mdl-34210607

ABSTRACT

One carbon metabolism (OCM) is critical for early development, as it provides one carbon (1C) units for the biosynthesis of DNA, proteins, and lipids and epigenetic modification of the genome. Epigenetic marks established early in life can be maintained and exert lasting impacts on gene expression and functions later in life. Animal and human studies have increasingly demonstrated that prenatal 1C nutrient deficiencies impair fetal growth, neurodevelopment, and cardiometabolic parameters in childhood, while sufficient maternal 1C nutrient intake is protective against these detrimental outcomes. However, recent studies also highlight the potential risk of maternal 1C nutrient excess or imbalance in disrupting early development. Further studies are needed to delineate the dose-response relationship among prenatal 1C nutrient exposure, epigenetic modifications, and developmental outcomes.


Subject(s)
Diet , Epigenesis, Genetic , Fetal Development , Animals , Carbon/metabolism , DNA Methylation , Female , Humans , Pregnancy
6.
Nutrients ; 12(1)2020 Jan 04.
Article in English | MEDLINE | ID: mdl-31947955

ABSTRACT

Maternal obesity increases the risk of metabolic dysregulation in rodent offspring, especially when offspring are exposed to a high-fat (HF), obesogenic diet later in life. We previously demonstrated that maternal choline supplementation (MCS) in HF-fed mouse dams during gestation prevents fetal overgrowth and excess adiposity. In this study, we examined the long-term metabolic influence of MCS. C57BL/6J mice were fed a HF diet with or without choline supplementation prior to and during gestation. After weaning, their pups were exposed to either a HF or control diet for 6 weeks before measurements. Prenatal and post-weaning dietary treatments led to sexually dimorphic responses. In male offspring, while post-weaning HF led to impaired fasting glucose and worse glucose tolerance (p < 0.05), MCS in HF dams (HFCS) attenuated these changes. HFCS (versus maternal normal fat control) appeared to improve metabolic functioning of visceral adipose tissue during post-weaning HF feeding, preventing the elevation in leptin and increasing (p < 0.05) mRNA expression of insulin receptor substrate 1 (Irs1) that promotes peripheral insulin signaling in male offspring. In contrast, MCS had minimal effects on metabolic outcomes of female offspring. In conclusion, MCS during HF feeding in mice improves long-term blood glucose homeostasis in male offspring when they are faced with a postnatal obesogenic environment.


Subject(s)
Blood Glucose/drug effects , Choline/administration & dosage , Diet, High-Fat/adverse effects , Dietary Supplements , Maternal Nutritional Physiological Phenomena/drug effects , Adiposity , Animals , Female , Glucose Intolerance/blood , Glucose Intolerance/etiology , Insulin Receptor Substrate Proteins/metabolism , Intra-Abdominal Fat/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/blood , Obesity/etiology , Pregnancy , Prenatal Exposure Delayed Effects/blood , Prenatal Exposure Delayed Effects/etiology , Weaning
7.
Nutrients ; 11(8)2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31394787

ABSTRACT

The importance of ensuring adequate choline intakes during pregnancy is increasingly recognized. Choline is critical for a number of physiological processes during the prenatal period with roles in membrane biosynthesis and tissue expansion, neurotransmission and brain development, and methyl group donation and gene expression. Studies in animals and humans have shown that supplementing the maternal diet with additional choline improves several pregnancy outcomes and protects against certain neural and metabolic insults. Most pregnant women in the U.S. are not achieving choline intake recommendations of 450 mg/day and would likely benefit from boosting their choline intakes through dietary and/or supplemental approaches.


Subject(s)
Choline/administration & dosage , Choline/physiology , Maternal Nutritional Physiological Phenomena , Animals , Diet , Dietary Supplements , Female , Fetus/physiology , Health Promotion , Humans , Maternal-Fetal Exchange , Nutritional Requirements , Pregnancy , Pregnancy Outcome , Prenatal Care
8.
Angew Chem Int Ed Engl ; 57(52): 17073-17078, 2018 12 21.
Article in English | MEDLINE | ID: mdl-30339297

ABSTRACT

Stapled peptides have emerged as a new class of therapeutics to effectively target intractable protein-protein interactions. Thus, efficient and versatile methods granting easy access to this class of compounds and expanding the scope(s) of the currently available ones are of great interest. Now, a solid phase approach is described for the synthesis of bisthioether stapled peptides with multiple architectures, including single-turn, double-turn, and double-stapled macrocycles. This method allows for ligation with all-hydrocarbon linkers of various lengths, avoiding the use of unnatural amino acids and expensive catalysts, and affords cyclopeptides with remarkable resistance to proteolytic degradation. The potential of this procedure is demonstrated by applying it to generate a stapled peptide that shows potent in vitro inhibition of methyltransferase activity of the polycomb repressive complex 2 (PRC2) of proteins.


Subject(s)
Enzyme Inhibitors/pharmacology , Peptides/pharmacology , Polycomb Repressive Complex 2/antagonists & inhibitors , Sulfides/pharmacology , Biocatalysis , Cell Line, Tumor , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Humans , Models, Molecular , Peptides/chemistry , Polycomb Repressive Complex 2/metabolism , Structure-Activity Relationship , Sulfides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL