Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(22): 27399-27410, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37226047

ABSTRACT

Implantable electrochemical sensor holds great promise in the real-time monitoring of dopamine (DA) to regulate body function. However, the real application of these sensors is limited by the weak current signal of DA in the human body and the poor compatibility of the on-chip microelectronic devices. In this work, a SiC/graphene composite film was fabricated using laser chemical vapor deposition (LCVD) and employed as a DA sensor. The graphene in the porous nanoforest-like SiC framework offered efficient channels for electronic transmission, leading to an enhanced electron transfer rate and consequently an increased current response for DA detection. The three-dimensional (3D) porous network also facilitated the exposure of more catalytic active sites toward DA oxidation. Besides, the wide distribution of graphene in the nanoforest-like SiC films reduced the interfacial resistance of the charge transfer. The SiC/graphene composite film exhibited excellent electrocatalytic activity toward DA oxidation with a low detection limit of 0.11 µM and a high sensitivity of 0.86 µA·µM-1·cm-2. The film electrode also showed a wide linear response for DA in 0.5-78 µM, along with good selectivity, repeatability, and reproducibility. Furthermore, the cell counting kit-8 (CCK-8) and live-dead assays revealed that the film is also biocompatible for biomedical applications. Therefore, the nanoforest-like SiC/graphene composite film via the CVD process enables a promising candidate for an integrated miniature DA biosensor with high detection performance.


Subject(s)
Cardiovascular Diseases , Graphite , Humans , Electrochemical Techniques/methods , Dopamine/chemistry , Graphite/chemistry , Reproducibility of Results , Electrodes
2.
Materials (Basel) ; 16(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36837106

ABSTRACT

Silicon carbonitride films were deposited on Si (100), Ge (111), and fused silica substrates through the reactive magnetron sputtering of a SiC target in an argon-nitrogen mixture. The deposition was carried out at room temperature and 300 °C and at an RF target power of 50-150 W. An increase in the nitrogen flow rate leads to the formation of bonds between silicon and carbon atoms and nitrogen atoms and to the formation of SiCxNy layers. The as-deposited films were analyzed with respect to their element composition, state of chemical bonding, mechanical and optical properties, and wetting behavior. It was found that all synthesized films were amorphous and represented a mixture of SiCxNy with free carbon. The films' surfaces were smooth and uniform, with a roughness of about 0.2 nm. Depending on the deposition conditions, SiCxNy films within the composition range 24.1 < Si < 44.0 at.%, 22.4 < C < 56.1 at.%, and 1.6 < N < 51.9 at.% were prepared. The contact angle values vary from 37° to 67°, the hardness values range from 16.2 to 34.4 GPa, and the optical band gap energy changes from 1.81 to 2.53 eV depending on the synthesis conditions of the SiCxNy layers. Particular attention was paid to the study of the stability of the elemental composition of the samples over time, which showed the invariance of the composition of the SiCxNy films for five months.

3.
Nanotechnology ; 28(18): 185602, 2017 May 05.
Article in English | MEDLINE | ID: mdl-28388592

ABSTRACT

Hexagonal boron nitride (h-BN) nanowalls (BNNWs) were synthesized by plasma-enhanced chemical vapor deposition (PECVD) from a borazine (B3N3H6) and ammonia (NH3) gas mixture at a low temperature range of 400 °C-600 °C on GaAs(100) substrates. The effect of the synthesis temperature on the structure and surface morphology of h-BN films was investigated. The length and thickness of the h-BN nanowalls were in the ranges of 50-200 nm and 15-30 nm, respectively. Transmission electron microscope images showed the obtained BNNWs were composed of layered non-equiaxed h-BN nanocrystallites 5-10 nm in size. The parallel-aligned h-BN layers as an interfacial layer were observed between the film and GaAs(100) substrate. BNNWs demonstrate strong blue light emission, high transparency (>90%) both in visible and infrared spectral regions and are promising for optical applications. The present results enable a convenient growth of BNNWs at low temperatures.

4.
Anal Bioanal Chem ; 398(2): 1077-84, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20607521

ABSTRACT

Triethylamine borane (TEAB) and He, N(2) or NH(3) were applied as additional reaction gases in the production of BC(x)N(y) layers by low-pressure chemical vapor deposition (LPCVD). These layers were deposited on Si(100) wafers and characterized chemically by X-ray photoelectron spectroscopy (XPS) and synchrotron radiation-based total-reflection X-ray fluorescence analysis combined with near-edge X-ray absorption fine-structure spectroscopy (TXRF-NEXAFS). The composition of the material produced without NH(3) was found to be dominated by B-C bonds with the stoichiometric formula B(2)C(3)N. B-N bonds with the formula B(2)CN(3) were preferred when NH(3) was added. A first attempt was made to compare the results obtained by applying trimethylamine borane and TEAB as single-source precursors.

5.
Anal Bioanal Chem ; 395(6): 1901-9, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19714320

ABSTRACT

Films of BC(x)N(y) were produced in a plasma-enhanced chemical vapor deposition process using trimethylborazine as precursor and with H2, He, N2, and NH3, respectively, as auxiliary gas. These films deposited on Si(100) wafers or fused quartz glass substrates were characterized chemically by X-ray photoelectron spectroscopy and by synchrotron radiation-based total-reflection X-ray fluorescence combined with near-edge X-ray absorption fine structure. Independent of the auxiliary gas, the B-N bonds are dominating. Furthermore, B-C and N-C bonds were identified. Oxygen, present in the bulk (in contrast to the surface layer of some nanometers, where molecular oxygen and/or water are absorbed) as an impurity, is bonded to boron or to carbon, respectively. The relation of boron and nitrogen changes with the character of the auxiliary gas: cB/cN approximately = 4:3 (for H2 and He) and cB/cN approximately = 1 (for N2 or NH3). Furthermore, physical properties such as the refractive index and the optical band-gap energy were determined.

SELECTION OF CITATIONS
SEARCH DETAIL
...