Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 10936, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37414809

ABSTRACT

There is a persistent risk of a large-scale malicious or accidental exposure to ionizing radiation that may affect a large number of people. Exposure will consist of both a photon and neutron component, which will vary in magnitude between individuals and is likely to have profound impacts on radiation-induced diseases. To mitigate these potential disasters, there exists a need for novel biodosimetry approaches that can estimate the radiation dose absorbed by each person based on biofluid samples, and predict delayed effects. Integration of several radiation-responsive biomarker types (transcripts, metabolites, blood cell counts) by machine learning (ML) can improve biodosimetry. Here we integrated data from mice exposed to various neutron + photon mixtures, total 3 Gy dose, using multiple ML algorithms to select the strongest biomarker combinations and reconstruct radiation exposure magnitude and composition. We obtained promising results, such as receiver operating characteristic curve area of 0.904 (95% CI: 0.821, 0.969) for classifying samples exposed to ≥ 10% neutrons vs. < 10% neutrons, and R2 of 0.964 for reconstructing photon-equivalent dose (weighted by neutron relative biological effectiveness) for neutron + photon mixtures. These findings demonstrate the potential of combining various -omic biomarkers for novel biodosimetry.


Subject(s)
Radiation Exposure , Radiation Injuries , Animals , Mice , Neutrons , Relative Biological Effectiveness , Photons
2.
Sci Adv ; 9(24): eadf6600, 2023 06 16.
Article in English | MEDLINE | ID: mdl-37315138

ABSTRACT

Acute hemorrhage commonly leads to coagulopathy and organ dysfunction or failure. Recent evidence suggests that damage to the endothelial glycocalyx contributes to these adverse outcomes. The physiological events mediating acute glycocalyx shedding are undefined, however. Here, we show that succinate accumulation within endothelial cells drives glycocalyx degradation through a membrane reorganization-mediated mechanism. We investigated this mechanism in a cultured endothelial cell hypoxia-reoxygenation model, in a rat model of hemorrhage, and in trauma patient plasma samples. We found that succinate metabolism by succinate dehydrogenase mediates glycocalyx damage through lipid oxidation and phospholipase A2-mediated membrane reorganization, promoting the interaction of matrix metalloproteinase 24 (MMP24) and MMP25 with glycocalyx constituents. In a rat hemorrhage model, inhibiting succinate metabolism or membrane reorganization prevented glycocalyx damage and coagulopathy. In patients with trauma, succinate levels were associated with glycocalyx damage and the development of coagulopathy, and the interaction of MMP24 and syndecan-1 was elevated compared to healthy controls.


Subject(s)
Endothelial Cells , Hemorrhage , Animals , Rats , Lipid Metabolism , Hypoxia , Succinates , Succinic Acid
3.
J Trauma Acute Care Surg ; 93(1): 13-20, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35234713

ABSTRACT

BACKGROUND: Succinate (SI) is a citric acid cycle metabolite that accumulates in tissues during hemorrhagic shock (HS) due to electron transport chain uncoupling. Dimethyl malonate (DMM) is a competitive inhibitor of SI dehydrogenase, which has been shown to reduce SI accumulation and protect against reperfusion injury. Whether DMM can be therapeutic after severe HS is unknown. We hypothesized that DMM would prevent SI buildup during resuscitation (RES) in a swine model of HS, leading to better physiological recovery after RES. METHODS: The carotid arteries of Yorkshire pigs were cannulated with a 5-Fr catheter. After placement of a Swan-Ganz catheter and femoral arterial line, the carotid catheters were opened and the animals were exsanguinated to a mean arterial pressure (MAP) of 45 mm. After 30 minutes in the shock state, the animals were resuscitated to a MAP of 60 mm using lactated ringers. A MAP above 60 mm was maintained throughout RES. One group received 10 mg/kg of DMM (n = 6), while the control received sham injections (n = 6). The primary end-point was SI levels. Secondary end-points included cardiac function and lactate. RESULTS: Succinate levels increased from baseline to the 20-minute RES point in control, while the DMM cohort remained unchanged. The DMM group required less intravenous fluid to maintain a MAP above 60 (450.0 vs. 229.0 mL; p = 0.01). The DMM group had higher pulmonary capillary wedge pressure at the 20-minute and 40-minute RES points. The DMM group had better recovery of cardiac output and index during RES, while the control had no improvement. While lactate levels were similar, DMM may lead to increased ionized calcium levels. DISCUSSION: Dimethyl malonate slows SI accumulation during HS and helps preserve cardiac filling pressures and function during RES. In addition, DMM may protect against depletion of ionized calcium. Dimethyl malonate may have therapeutic potential during HS.


Subject(s)
Shock, Hemorrhagic , Animals , Calcium , Disease Models, Animal , Humans , Lactates , Malonates , Resuscitation , Succinic Acid , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...