Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 111(23): 235007, 2013 Dec 06.
Article in English | MEDLINE | ID: mdl-24476285

ABSTRACT

Extremely-low-frequency (ELF, 3-3000 Hz) and very-low-frequency (VLF, 3-30 kHz) waves generated by the excitation of the thermal cubic nonlinearity are observed for the first time at the High-Frequency Active Auroral Research Program high-frequency transmitter in Gakona, Alaska. The observed ELF and VLF field amplitudes are the strongest generated by any high frequency (HF, 3-30 MHz) heating facility using this mechanism to date. This manner of ELF and VLF generation is independent of naturally forming currents, such as the auroral electrojet current system. Time-of-arrival analysis applied to experimental observations shows that the thermal cubic ELF and VLF source region is located within the collisional D-region ionosphere. Observations are compared with the predictions of a theoretical HF heating model using perturbation theory. For the experiments performed, two X-mode HF waves were transmitted at frequencies ω1 and ω2, with |ω2-2ω1| being in the ELF and VLF frequency range. In contrast with previous work, we determine that the ELF and VLF source is dominantly produced by the interaction between collision frequency oscillations at frequency ω2-ω1 and the polarization current density associated with the lower frequency HF wave at frequency ω1. This specific interaction has been neglected in past cubic thermal nonlinearity work, and it plays a major role in the generation of ELF and VLF waves.

SELECTION OF CITATIONS
SEARCH DETAIL
...