Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Polymers (Basel) ; 15(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37447482

ABSTRACT

Nanoparticles are being used in novel applications of the thermoplastics industry, including automotive parts, the sports industry and leisure and consumer goods, which can be produced nowadays through additive manufacturing. However, there is limited information on the health and safety aspects during the production of these new materials, mainly from recycled sources. This study covers the exposure assessment to nano- and micro-size particles emitted from the nanocomposites during the production of filaments for 3D printing through a compounding and extrusion pilot line using recycled (post-industrial) thermoplastic polyurethane (TPU) and recycled polyamide 12 (PA12), which have been also upcycled through reinforcement with iron oxide nanoparticles (Fe3O4 NPs), introducing matrix healing properties triggered by induction heating. The assessment protocol included near- and far-field measurements, considering the extruder as the primary emission source, and portable measuring devices for evaluating particulate emissions reaching the inhalable zone of the lab workers. A Failure Modes and Effects Analysis (FMEA) study for the extrusion process line was defined along with a Failure Tree Analysis (FTA) process in which the process deviations, their sources and the relations between them were documented. FTA allowed the identification of events that should take place in parallel (simultaneously) or in series for the failure modes to take place and the respective corrective actions to be proposed (additional to the existing control measures).

2.
Polymers (Basel) ; 14(19)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36235900

ABSTRACT

Bi-material composite structures with continuous fibers embedded on polymer substrates exhibit self-morphing under thermal stimulus induced by the different coefficients of thermal expansion (CTE) between the two constituent materials. In this study, a series of such structures are investigated in terms of fiber patterns and materials to achieve programmable and reversible transformations that can be exploited for thermal management applications. Stemming from this investigation's results, an axial cooling fan prototype is designed and fabricated with composite blades that passively alter their shape, specifically their curvature and twist angle, under different operating temperatures. A series of computational fluid dynamics (CFD) simulations are performed, subjecting the fan's geometry to different flow temperatures to measure differences in airflow deriving from the induced shape transformations. Corresponding experimental trials are additionally performed, aiming to validate the simulation results. The results indicate the potential of utilizing bilayer self-morphing configurations for the fabrication of smart components for cooling purposes.

3.
Nanomaterials (Basel) ; 12(15)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35957077

ABSTRACT

Machine learning has been an emerging scientific field serving the modern multidisciplinary needs in the Materials Science and Manufacturing sector. The taxonomy and mapping of nanomaterial properties based on data analytics is going to ensure safe and green manufacturing with consciousness raised on effective resource management. The utilization of predictive modelling tools empowered with artificial intelligence (AI) has proposed novel paths in materials discovery and optimization, while it can further stimulate the cutting-edge and data-driven design of a tailored behavioral profile of nanomaterials to serve the special needs of application environments. The previous knowledge of the physics and mathematical representation of material behaviors, as well as the utilization of already generated testing data, received specific attention by scientists. However, the exploration of available information is not always manageable, and machine intelligence can efficiently (computational resources, time) meet this challenge via high-throughput multidimensional search exploration capabilities. Moreover, the modelling of bio-chemical interactions with the environment and living organisms has been demonstrated to connect chemical structure with acute or tolerable effects upon exposure. Thus, in this review, a summary of recent computational developments is provided with the aim to cover excelling research and present challenges towards unbiased, decentralized, and data-driven decision-making, in relation to increased impact in the field of advanced nanomaterials manufacturing and nanoinformatics, and to indicate the steps required to realize rapid, safe, and circular-by-design nanomaterials.

4.
Polymers (Basel) ; 14(12)2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35745994

ABSTRACT

The COVID-19 pandemic instigated massive production of critical medical supplies and personal protective equipment. Injection moulding (IM) is considered the most prominent thermoplastic part manufacturing technique, offering the use of a large variety of feedstocks and rapid production capacity. Within the context of the European Commission-funded imPURE project, the benefits of IM have been exploited in repurposed IM lines to accommodate the use of nanocomposites and introduce the unique properties of nanomaterials. However, these amendments in the manufacturing lines highlighted the need for targeted and thorough occupational risk analysis due to the potential exposure of workers to airborne nanomaterials and fumes, as well as the introduction of additional occupational hazards. In this work, a safety-oriented failure mode and effects analysis (FMEA) was implemented to evaluate the main hazards in repurposed IM lines using acrylonitrile butadiene styrene (ABS) matrix and silver nanoparticles (AgNPs) as additives. Twenty-eight failure modes were identified, with the upper quartile including the seven failure modes presenting the highest risk priority numbers (RPN), signifying a need for immediate control action. Additionally, a nanosafety control-banding tool allowed hazard classification and the identification of control actions required for mitigation of occupation risks due to the released airborne silver nanoparticles.

5.
Polymers (Basel) ; 13(23)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34883595

ABSTRACT

The present study focuses on the effect of two novel carbon fibre surface treatments, electropolymerisation of methacrylic acid and air pressure plasma, on the mechanical properties and structural integrity of carbon-fibre-reinforced composites under operational conditions. Extensive mechanical testing was applied, both in nano- and macro-scale, to assess the performance of the composites and the interphase properties after ultraviolet/humidity weathering. The results of the mechanical assessment are supported by structure, surface, and chemistry examination in order to reveal the failure mechanism of the composites. Composites with the electropolymerisation treatment exhibited an increase of 11.8% in interlaminar shear strength, while APP treatment improved the property of 23.9%, rendering both surface treatments effective in increasing the fibre-matrix adhesion. Finally, it was proven that the developed composites can withstand operational conditions in the long term, rendering them suitable for a wide variety of structural and engineering applications.

6.
Nanomaterials (Basel) ; 11(10)2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34685069

ABSTRACT

The exposure of carbon-fiber-reinforced polymers (CFRPs) to open-field conditions was investigated. Establishment of structure-property relations with nanoindentation enabled the observation of modification effects on carbon-fiber interfaces, and impact resistance. Mapping of nanomechanical properties was performed using expectation-maximization optimization of Gaussian fitting for each CFRPs microstructure (matrix, interface, carbon fiber), while Weibull analysis connected the weathering effect to the statistically representative behavior of the produced composites. Plasma modification demonstrated reduced defect density and improved nanomechanical properties after weathering. Artificial intelligence for anomaly detection provided insights on condition monitoring of CFRPs. Deep-learning neural networks with three hidden layers were used to model the resistance to plastic deformation based on nanoindentation parameters. This study provides new assessment insights in composite engineering and quality assurance, especially during exposure under service conditions.

7.
Polymers (Basel) ; 12(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961922

ABSTRACT

Life cycle assessment is a methodology to assess environmental impacts associated with a product or system/process by accounting resource requirements and emissions over its life cycle. The life cycle consists of four stages: material production, manufacturing, use, and end-of-life. This study highlights the need to conduct life cycle assessment (LCA) early in the new product development process, as a means to assess and evaluate the environmental impacts of (nano)enhanced carbon fibre-reinforced polymer (CFRP) prototypes over their entire life cycle. These prototypes, namely SleekFast sailing boat and handbrake lever, were manufactured by functionalized carbon fibre fabric and modified epoxy resin with multi-walled carbon nanotubes (MWCNTs). The environmental impacts of both have been assessed via LCA with a functional unit of '1 product piece'. Climate change has been selected as the key impact indicator for hotspot identification (kg CO2 eq). Significant focus has been given to the end-of-life phase by assessing different recycling scenarios. In addition, the respective life cycle inventories (LCIs) are provided, enabling the identification of resource hot spots and quantifying the environmental benefits of end-of-life options.

8.
Bioengineering (Basel) ; 7(3)2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32825042

ABSTRACT

Bioinspired scaffolds mimicking natural bone-tissue properties holds great promise in tissue engineering applications towards bone regeneration. Within this work, a way to reinforce mechanical behavior of bioinspired bone scaffolds was examined by applying a physical crosslinking method. Scaffolds consisted of hydroxyapatite nanocrystals, biomimetically synthesized in the presence of collagen and l-arginine. Scaffolds were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), microcomputed tomography, and nanoindentation. Results revealed scaffolds with bone-like nanostructure and composition, thus an inherent enhanced cytocompatibility. Evaluation of porosity proved the development of interconnected porous network with bimodal pore size distribution. Mechanical reinforcement was achieved through physical crosslinking with riboflavin irradiation, and nanoindentation tests indicated that within the experimental conditions of 45% humidity and 37 °C, photo-crosslinking led to an increase in the scaffold's mechanical properties. Elastic modulus and hardness were augmented, and specifically elastic modulus values were doubled, approaching equivalent values of trabecular bone. Cytocompatibility of the scaffolds was assessed using MG63 human osteosarcoma cells. Cell viability was evaluated by double staining and MTT assay, while attachment and morphology were investigated by SEM. The results suggested that scaffolds provided a cell friendly environment with high levels of viability, thus supporting cell attachment, spreading and proliferation.

9.
Nanomaterials (Basel) ; 10(4)2020 Mar 30.
Article in English | MEDLINE | ID: mdl-32235614

ABSTRACT

Nanoindentation was utilized as a non-destructive technique to identify Portland Cement hydration phases. Artificial Intelligence (AI) and semi-supervised Machine Learning (ML) were used for knowledge gain on the effect of carbon nanotubes to nanomechanics in novel cement formulations. Data labelling is performed with unsupervised ML with k-means clustering. Supervised ML classification is used in order to predict the hydration products composition and 97.6% accuracy was achieved. Analysis included multiple nanoindentation raw data variables, and required less time to execute than conventional single component probability density analysis (PDA). Also, PDA was less informative than ML regarding information exchange and re-usability of input in design predictions. In principle, ML is the appropriate science for predictive modeling, such as cement phase identification and facilitates the acquisition of precise results. This study introduces unbiased structure-property relations with ML to monitor cement durability based on cement phases nanomechanics compared to PDA, which offers a solution based on local optima of a multidimensional space solution. Evaluation of nanomaterials inclusion in composite reinforcement using semi-supervised ML was proved feasible. This methodology is expected to contribute to design informatics due to the high prediction metrics, which holds promise for the transfer learning potential of these models for studying other novel cement formulations.

10.
Micromachines (Basel) ; 10(12)2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31795128

ABSTRACT

The aim of this study is to provide a detailed strategy for Safe-by-Design (SbD) 3D-printed lab-on-a-chip (LOC) device manufacturing, using Fused Filament Fabrication (FFF) technology. First, the applicability of FFF in lab-on-a-chip device development is briefly discussed. Subsequently, a methodology to categorize, identify and implement SbD measures for FFF is suggested. Furthermore, the most crucial health risks involved in FFF processes are examined, placing the focus on the examination of ultrafine particle (UFP) and Volatile Organic Compound (VOC) emission hazards. Thus, a SbD scheme for lab-on-a-chip manufacturing is provided, while also taking into account process optimization for obtaining satisfactory printed LOC quality. This work can serve as a guideline for the effective application of FFF technology for lab-on-a-chip manufacturing through the safest applicable way, towards a continuous effort to support sustainable development of lab-on-a-chip devices through cost-effective means.

SELECTION OF CITATIONS
SEARCH DETAIL