Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Biosensors (Basel) ; 12(9)2022 Sep 11.
Article in English | MEDLINE | ID: mdl-36140134

ABSTRACT

The rise in number of infections from multidrug-resistant (MDR) Gram-negative microbes has led to an increase in the use of a variety of 'polymyxins' such as colistin. Even though colistin is known to cause minor nephro- and neuro-toxicity, it is still considered as last resort antibiotic for treating MDR infections. In this study, we have applied Raman spectroscopy to understand the differences among colistin sensitive and resistant bacterial strains at community level. We have successfully generated colistin resistant clones and verified the presence of resistance-causing MCR-1 plasmid. A unique spectral profile associated with specific drug concentration has been obtained. Successful delineation between resistant and sensitive cells has also been achieved via principal component analysis. Overall findings support the prospective utility of Raman spectroscopy in identifying anti-microbial resistance.


Subject(s)
Colistin , Drug Resistance, Bacterial , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Microbial Sensitivity Tests , Plasmids , Spectrum Analysis, Raman
2.
Appl Spectrosc ; 76(10): 1263-1271, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35694822

ABSTRACT

Optical density based measurements are routinely performed to monitor the growth of microbes. These measurements solely depend upon the number of cells and do not provide any information about the changes in the biochemical milieu or biological status. An objective information about these parameters is essential for evaluation of novel therapies and for maximizing the metabolite production. In the present study, we have applied Raman spectroscopy to monitor growth kinetics of three different pathogenic Gram-negative microbes Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii. Spectral measurements were performed under 532 nm excitation with 5 seconds of exposure time. Spectral features suggest temporal changes in the "peptide" and "nucleic acid" content of cells under different growth stages. Using principal component analysis (PCA), successful discrimination between growth phases was also achieved. Overall, the findings are supportive of the prospective adoption of Raman based approaches for monitoring microbial growth.


Subject(s)
Pseudomonas aeruginosa , Spectrum Analysis, Raman , Principal Component Analysis , Prospective Studies , Spectrum Analysis, Raman/methods
3.
World J Oncol ; 9(1): 21-28, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29581812

ABSTRACT

BACKGROUND: The aim of the study was to evaluate the radiation sensitizing ability of ERK1/2, PI3K-AKT and JNK inhibitors in highly radiation resistant and metastatic B16F10 cells which carry wild-type Ras and Braf. METHODS: Mouse melanoma cell line B16F10 was exposed to 1.0, 2.0 and 3.0 Gy of electron beam radiation. Phosphorylated ERK1/2, AKT and JNK levels were estimated by ELISA. Cells were exposed to 2.0 and 3.0 Gy of radiation with or without prior pharmacological inhibition of ERK1/2, AKT as well as JNK pathways. Cell death induced by radiation as well as upon inhibition of these pathways was measured by TUNEL assay using flow cytometry. RESULTS: Exposure of B16F10 cells to 1.0, 2.0 and 3.0 Gy of electron beam irradiation triggered an increase in all the three phosphorylated proteins compared to sham-treated and control groups. B16F10 cells pre-treated with either ERK1/2 or AKT inhibitors equally enhanced radiation-induced cell death at 2.0 as well as 3.0 Gy (P < 0.001), while inhibition of JNK pathway increased radiation-induced cell death to a lesser extent. Interestingly combined inhibition of ERK1/2 or AKT pathways did not show additional cell death compared to individual ERK1/2 or AKT inhibition. This indicates that ERK1/2 or AKT mediates radiation resistance through common downstream molecules in B16F10 cells. CONCLUSIONS: Even without activating mutations in Ras or Braf genes, ERK1/2 and AKT play a critical role in B16F10 cell survival upon radiation exposure and possibly act through common downstream effector/s.

SELECTION OF CITATIONS
SEARCH DETAIL