Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 205: 116571, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38941805

ABSTRACT

This study assessed the ecological health of waters within the Saudi Arabian Exclusive Economic Zone, by utilizing benthic biotic indices with a marine monitoring dataset covering the years 2013 to 2018. This comprehensive evaluation covered a vast expanse, encompassing 67 distinctive sampling locations characterized by a wide range of depth and salinity gradients. The study examined spatial fluctuations in the benthic community and assessed potential correlations with environmental variables, including salinity, depth, sediment texture, total organic carbon, and other relevant factors. The macrobenthic density varied across the study sites, with an average density of 566 ± 120 ind.m-2. The Shannon diversity index ranged from 3.21 and 5.90, with an average of 4.70 ± 0.52. Based on the average AMBI values, all the locations were categorized as either slightly disturbed or undisturbed. Additionally, the M-AMBI analysis indicated that 95.5 % sites were in good or high ecological status.

2.
Mar Pollut Bull ; 164: 112028, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33515822

ABSTRACT

The Gulf of Aqaba (hereafter 'the Gulf') is a narrow, semi-enclosed, warm, high saline, and oligotrophic water body. This baseline study provides the first quantitative data on deep-sea (207-1281 m depth) benthos of the Gulf. Fifty-five benthic species (predominantly polychaetes) with a density of 160-670 ind. m-2, species richness of 11-25, and Shannon-Wiener diversity (H') of 3.14-4.17 bits. ind.-1 were recorded from nine stations. The density and H' of benthos of the Gulf are comparable with those of the Red Sea, while both are lower than those reported from the Arabian Sea and the Mediterranean Sea. The good-high ecological status of benthic communities indicates the absence of major stress in the deep-sea habitats of the Gulf. As large-scale urbanization is proposed in the Saudi coastal areas of the Gulf, this study is expected to provide a baseline dataset for future environmental impact assessments.


Subject(s)
Ecosystem , Environmental Monitoring , Indian Ocean , Mediterranean Sea , Saudi Arabia
3.
Sci Total Environ ; 750: 142254, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33182216

ABSTRACT

The Arabian Gulf is a natural laboratory for examining the consequences of large-scale disturbances due to global warming on coral reef ecosystems because of its extreme temperature regime. Using a coral reef monitoring time series extending from 1985 to 2015, we examined the long-term ecological changes in fish and macro-invertebrate communities as these habitats suffered heat shocks. We used a GLMM modelling framework to obtain clean annual signals in community indicators from noisy data. We also visualized temporal change in the taxonomic composition of fishes and macro-invertebrates. A phase shift from predominantly reef-building corals to barren grounds occurred between 1996 and 2000. Macro-invertebrates responded rapidly, and most of associated indicators recovered to pre-shift levels in 15 years. Fishes generally had lagged responses to the phase shift and had shifted to a new state with lower abundance, as well as different species composition. Increased levels of herbivory first by macro-invertebrates, mostly sea urchins, and then fishes, could have suppressed macro-algae expansion and consequently led to the dominance of barren ground. When the phase shift occurred, most of the 14 fish families declined in abundance while macro-invertebrate groups increased. Fish families able to utilize non-coral habitats appeared more resilient to the disturbances and subsequent coral degradation. Unlike other regions, we observed high resilience of the coral-dependent butterflyfishes to coral loss, possibly due to local migration from other less-impacted coral reefs. We hypothesized a top-down control mechanism mediated by predation by fishes has contributed to shaping the temporal and spatial patterns of the macro-invertebrates. Our results also revealed differences in spatial preferences among fishes and macro-invertebrate groups, which could be used to set priorities and develop effective conservation and management strategies.


Subject(s)
Anthozoa , Coral Reefs , Animals , Ecosystem , Fishes , Invertebrates
4.
Sci Rep ; 10(1): 15356, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32948822

ABSTRACT

This paper reports a deep-water coral framework (a single colonial bush or a larger bioconstruction of coral covering the sea bottom), formed entirely by the scleractinian coral Eguchipsammia fistula (Alcock, 1902) (Dendrophylliidae), in the northern Red Sea waters of Saudi Arabia at a depth of about 640 m. The framework consists of mostly live corals with a total area of about 10 m2 and the length of the individual coral branches range from 12 to 30 cm. Although E. fistula is ubiquitous, this discovery is the second record of a framework formed by this species and the first discovery of a large living reef in the Red Sea. The results of the genetic study indicate the potential existence of a genetic variation of E. fistula in the Red Sea. This discovery implies that the Red Sea has favorable habitats for framework-forming DWC species and highlights the need for conducting more systematic surveys for understanding their distribution, abundance, and ecology.


Subject(s)
Anthozoa/classification , Anthozoa/physiology , Ecosystem , Seawater/analysis , Animals , Indian Ocean , Oceanography , Saudi Arabia
5.
Sci Total Environ ; 719: 135177, 2020 Jun 01.
Article in English | MEDLINE | ID: mdl-31864782

ABSTRACT

Along the past century, the Arabian Gulf has experienced a continuous and fast coastal development leading to increase the human pressures on the marine environment. The present study attempts to describe the historical changes of trace elements in the sediments of vegetated coastal habitats in the western Arabian Gulf. 210Pb-dated sediment cores collected from seagrass, mangrove and saltmarsh habitats were analyzed to evaluate historical variations in concentrations and burial rates of 20 trace elements (Al, As, Ba, Ca, Co, Cr, Cu, Fe, Hg, K, Mg, Mn, Na, Ni, P, Pb, S, Sr, V and Zn). The highest correlations (Spearman correlation coefficients ≥0.51) were found between crustal elements (Al, Fe, Co, Cr, K, Na, Mg, Mn, Ni, V, and P), suggesting a common crustal source in the Gulf. The increased concentrations of these crustal elements in modern marine sediments of the Arabian Gulf seem to be linked to increased mineral dust deposition in the area. Over the last century, both elemental concentrations and burial rates increased by factors of 1-9 and 1-15, respectively, with a remarkably fast increase occurring in the past six decades (~1960 - early 2000). This is most likely due to an increase in anthropogenic pressures along the Gulf coast. Our study demonstrates that sediments in vegetated coastal habitats provide long-term archives of trace elements concentrations and burial rates reflecting human activities in the Arabian Gulf.

7.
Sci Total Environ ; 669: 205-212, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30878929

ABSTRACT

Massive consumption of petroleum since the past century has led to considerable emissions into marine ecosystems. Marine sediments may accumulate substantial quantities of petroleum and associated contaminants in oil-producing areas. Here, we report accelerated accumulation of total petroleum hydrocarbons (TPH) in 'blue carbon' vegetated ecosystems of the Arabian Gulf - the world's most important region for oil production. In addition to increased accumulation with the onset of oil exploitation, sediment records reflect a large depositional event associated with the 1991 Gulf War, with the magnitude of these maxima varying across habitats, depending on their elevation along the shoreline. Blue carbon ecosystems of the Arabian Gulf currently bury about 2300 megagrams (Mg) of TPHs annually and have accumulated TPH stocks of 59,799 Mg over the past 25 years alone. Massive burial and sequestration of TPH by blue carbon ecosystems is an important, but thus far unrecognized, removal mechanism in the Arabian Gulf. Conserving these ecosystems is important to avoid possible remobilization of sequestered TPH into the surrounding environment.

8.
Trends Ecol Evol ; 33(10): 790-802, 2018 10.
Article in English | MEDLINE | ID: mdl-30166069

ABSTRACT

Predictive models are central to many scientific disciplines and vital for informing management in a rapidly changing world. However, limited understanding of the accuracy and precision of models transferred to novel conditions (their 'transferability') undermines confidence in their predictions. Here, 50 experts identified priority knowledge gaps which, if filled, will most improve model transfers. These are summarized into six technical and six fundamental challenges, which underlie the combined need to intensify research on the determinants of ecological predictability, including species traits and data quality, and develop best practices for transferring models. Of high importance is the identification of a widely applicable set of transferability metrics, with appropriate tools to quantify the sources and impacts of prediction uncertainty under novel conditions.


Subject(s)
Ecology/methods , Models, Biological
10.
Sci Total Environ ; 566-567: 1235-1244, 2016 Oct 01.
Article in English | MEDLINE | ID: mdl-27277209

ABSTRACT

This study reports the levels of total arsenic and arsenic species in marine biota such as clams (Meretrix meretrix; N=21) and pearl oyster (Pinctada radiata; N=5) collected from nine costal sites in Jan 2014, and cuttlefish (Sepia pharaonis; N=8), shrimp (Penaeus semisulcatus; N=1), and seven commercially important finfish species (N=23) collected during Apr-May 2013 from seven offshore sites in the western Arabian Gulf. Total As and As species such as dimethylarsinic acid (DMA), arsenobetaine (AB), trimethylarsine oxide (TMAO), arsenocholine (AC), tetramethylarsonium ion (Tetra), arsenosugar-glycerol (As-Gly) and inorganic As (iAs) were determined by using ICPMS and HPLC/ICPMS. In bivalves, the total As concentrations ranged from 16 to 118mg/kg dry mass; the toxic iAs fraction contributed on average less than 0.8% of the total As, while the nontoxic AB fraction formed around 58%. Total As concentrations for the remaining seafood (cuttlefish, shrimp and finfish) ranged from 11 to 134mg/kg dry mass and the iAs and AB fractions contributed on average 0.03% and 81% respectively of the total As. There was no significant relationship between the tissue concentrations of total As and iAs in the samples. There was also no significant relationship between As levels in seafood and geographical location or salinity of the waters from which samples were collected. Based on our results, we recommend introducing a maximum permissible level of arsenic in seafood from the Gulf based on iAs content rather than based on total As. Our analyses of cancer risks and non-cancer hazards identified non-negligible risks and the potential for hazards; the greatest risks were identified for expatriate consumers of bivalves and high-end consumers of seafood. Despite this, many uncertainties remain that would be best addressed by further analyses.


Subject(s)
Arsenic/analysis , Arsenicals/analysis , Food Contamination/analysis , Risk Assessment , Seafood/analysis , Water Pollutants, Chemical/analysis , Humans , Saudi Arabia
SELECTION OF CITATIONS
SEARCH DETAIL
...