Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Biochem Mol Biol ; 76: 118-147, 2016 09.
Article in English | MEDLINE | ID: mdl-27522922

ABSTRACT

Manduca sexta, known as the tobacco hornworm or Carolina sphinx moth, is a lepidopteran insect that is used extensively as a model system for research in insect biochemistry, physiology, neurobiology, development, and immunity. One important benefit of this species as an experimental model is its extremely large size, reaching more than 10 g in the larval stage. M. sexta larvae feed on solanaceous plants and thus must tolerate a substantial challenge from plant allelochemicals, including nicotine. We report the sequence and annotation of the M. sexta genome, and a survey of gene expression in various tissues and developmental stages. The Msex_1.0 genome assembly resulted in a total genome size of 419.4 Mbp. Repetitive sequences accounted for 25.8% of the assembled genome. The official gene set is comprised of 15,451 protein-coding genes, of which 2498 were manually curated. Extensive RNA-seq data from many tissues and developmental stages were used to improve gene models and for insights into gene expression patterns. Genome wide synteny analysis indicated a high level of macrosynteny in the Lepidoptera. Annotation and analyses were carried out for gene families involved in a wide spectrum of biological processes, including apoptosis, vacuole sorting, growth and development, structures of exoskeleton, egg shells, and muscle, vision, chemosensation, ion channels, signal transduction, neuropeptide signaling, neurotransmitter synthesis and transport, nicotine tolerance, lipid metabolism, and immunity. This genome sequence, annotation, and analysis provide an important new resource from a well-studied model insect species and will facilitate further biochemical and mechanistic experimental studies of many biological systems in insects.


Subject(s)
Gene Expression , Genome, Insect , Manduca/genetics , Animals , Gene Expression Profiling , Larva/genetics , Larva/growth & development , Manduca/growth & development , Pupa/genetics , Pupa/growth & development , Sequence Analysis, DNA , Synteny
2.
Mob DNA ; 6: 10, 2015.
Article in English | MEDLINE | ID: mdl-25991928

ABSTRACT

BACKGROUND: Short interspersed elements (SINEs) have a powerful influence on genome evolution and can be useful markers for phylogenetic inference and population genetic analyses. In this study, we examined survey sequence and whole genome data to determine the evolutionary dynamics of Ves SINEs in the genomes of 11 bats, nine from Vespertilionidae. RESULTS: We identified 41 subfamilies of Ves and linked several to specific lineages. We also revealed substantial differences among lineages including the observation that Ves accumulation and Ves subfamily diversity is significantly higher in vesper as opposed to non-vesper bats. This is especially interesting when one considers the increased transposable element diversity of vesper bats in general. CONCLUSIONS: Our data suggest that survey sequencing and genome mining are valuable tools to investigate SINE evolution among related lineages and can provide substantial information about the ability of SINEs to proliferate in diverse genomes. This method would also be a useful first step in determining which subfamilies would be the best to target when developing SINEs as markers for phylogenetic and population genetic analyses.

SELECTION OF CITATIONS
SEARCH DETAIL
...