Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 28
1.
bioRxiv ; 2024 Jan 11.
Article En | MEDLINE | ID: mdl-38260423

ZNRF3 and RNF43 are closely related transmembrane E3 ubiquitin ligases with significant roles in development and cancer. Conventionally, their biological functions have been associated with regulating WNT signaling receptor ubiquitination and degradation. However, our proteogenomic studies have revealed EGFR as the most negatively correlated protein with ZNRF3/RNF43 mRNA levels in multiple human cancers. Through biochemical investigations, we demonstrate that ZNRF3/RNF43 interact with EGFR via their extracellular domains, leading to EGFR ubiquitination and subsequent degradation facilitated by the E3 ligase RING domain. Overexpression of ZNRF3 reduces EGFR levels and suppresses cancer cell growth in vitro and in vivo, whereas knockout of ZNRF3/RNF43 stimulates cell growth and tumorigenesis through upregulated EGFR signaling. Together, these data highlight ZNRF3 and RNF43 as novel E3 ubiquitin ligases of EGFR and establish the inactivation of ZNRF3/RNF43 as a driver of increased EGFR signaling, ultimately promoting cancer progression. This discovery establishes a connection between two fundamental signaling pathways, EGFR and WNT, at the level of cytoplasmic membrane receptor, uncovering a novel mechanism underlying the frequent co-activation of EGFR and WNT signaling in development and cancer.

2.
Cancer Cell ; 41(9): 1586-1605.e15, 2023 09 11.
Article En | MEDLINE | ID: mdl-37567170

We characterized a prospective endometrial carcinoma (EC) cohort containing 138 tumors and 20 enriched normal tissues using 10 different omics platforms. Targeted quantitation of two peptides can predict antigen processing and presentation machinery activity, and may inform patient selection for immunotherapy. Association analysis between MYC activity and metformin treatment in both patients and cell lines suggests a potential role for metformin treatment in non-diabetic patients with elevated MYC activity. PIK3R1 in-frame indels are associated with elevated AKT phosphorylation and increased sensitivity to AKT inhibitors. CTNNB1 hotspot mutations are concentrated near phosphorylation sites mediating pS45-induced degradation of ß-catenin, which may render Wnt-FZD antagonists ineffective. Deep learning accurately predicts EC subtypes and mutations from histopathology images, which may be useful for rapid diagnosis. Overall, this study identified molecular and imaging markers that can be further investigated to guide patient stratification for more precise treatment of EC.


Endometrial Neoplasms , Metformin , Proteogenomics , Female , Humans , Proto-Oncogene Proteins c-akt/genetics , Prospective Studies , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , beta Catenin/genetics , beta Catenin/metabolism , Metformin/pharmacology
4.
Sci Adv ; 9(19): eade0059, 2023 05 12.
Article En | MEDLINE | ID: mdl-37172086

CRISPR-Cas9 has been used successfully to introduce indels in somatic cells of rodents; however, precise editing of single nucleotides has been hampered by limitations of flexibility and efficiency. Here, we report technological modifications to the CRISPR-Cas9 vector system that now allows homology-directed repair-mediated precise editing of any proto-oncogene in murine somatic tissues to generate tumor models with high flexibility and efficiency. Somatic editing of either Kras or Pik3ca in both normal and hyperplastic mammary glands led to swift tumorigenesis. The resulting tumors shared some histological, transcriptome, and proteome features with tumors induced by lentivirus-mediated expression of the respective oncogenes, but they also exhibited some distinct characteristics, particularly showing less intertumor variation, thus potentially offering more consistent models for cancer studies and therapeutic development. Therefore, this technological advance fills a critical gap between the power of CRISPR technology and high-fidelity mouse models for studying human tumor evolution and preclinical drug testing.


Gene Editing , Neoplasms , Animals , Mice , Humans , Gene Editing/methods , CRISPR-Cas Systems/genetics , Neoplasms/genetics , Neoplasms/therapy , Recombinational DNA Repair , Disease Models, Animal
5.
Cancer Prev Res (Phila) ; 16(2): 65-73, 2023 02 06.
Article En | MEDLINE | ID: mdl-36343340

Antiestrogen medication is the only chemoprevention currently available for women at a high risk of developing breast cancer; however, antiestrogen therapy requires years to achieve efficacy and has adverse side effects. Therefore, it is important to develop an efficacious chemoprevention strategy that requires only a short course of treatment. PIK3CA is commonly activated in breast atypical hyperplasia, the known precancerous precursor of breast cancer. Targeting PI3K signaling in these precancerous lesions may offer a new strategy for chemoprevention. Here, we first established a mouse model that mimics the progression from precancerous lesions to breast cancer. Next, we demonstrated that a short-course prophylactic treatment with the clinically approved PI3K inhibitor alpelisib slowed early lesion expansion and prevented cancer formation in this model. Furthermore, we showed that alpelisib suppressed ex vivo expansion of patient-derived atypical hyperplasia. Together, these data indicate that the progression of precancerous breast lesions heavily depends on the PI3K signaling, and that prophylactic targeting of PI3K activity can prevent breast cancer. PREVENTION RELEVANCE: PI3K protein is abnormally high in breast precancerous lesions. This preclinical study demonstrates that the FDA-approved anti-PI3K inhibitor alpelisib can prevent breast cancer and thus warrant future clinical trials in high-risk women.


Precancerous Conditions , Thiazoles , Animals , Mice , Female , Hyperplasia/drug therapy , Thiazoles/therapeutic use , Phosphoinositide-3 Kinase Inhibitors , Precancerous Conditions/drug therapy , Estrogen Receptor Modulators , Class I Phosphatidylinositol 3-Kinases
6.
Oncogene ; 41(48): 5214-5222, 2022 11.
Article En | MEDLINE | ID: mdl-36261627

Signal transducer and activator of transcription 5 (STAT5) promotes cell survival and instigates breast tumor formation, and in the normal breast it also drives alveolar differentiation and lactogenesis. However, whether STAT5 drives a differentiated phenotype in breast tumorigenesis and therefore impacts cancer spread and metastasis is unclear. We found in two genetically engineered mouse models of breast cancer that constitutively activated Stat5a (Stat5aca) caused precancerous mammary epithelial cells to become lactogenic and evolve into tumors with diminished potential to metastasize. We also showed that STAT5aca reduced the migratory and invasive ability of human breast cancer cell lines in vitro. Furthermore, we demonstrated that STAT5aca overexpression in human breast cancer cells lowered their metastatic burden in xenografted mice. Moreover, RPPA, Western blotting, and studies of ChIPseq data identified several EMT drivers regulated by STAT5. In addition, bioinformatic studies detected a correlation between STAT5 activity and better prognosis of breast cancer patients. Together, we conclude that STAT5 activation during mammary tumorigenesis specifies a tumor phenotype of lactogenic differentiation, suppresses EMT, and diminishes potential for subsequent metastasis.


Breast Neoplasms , STAT5 Transcription Factor , Animals , Female , Humans , Mice , Breast/pathology , Breast Neoplasms/pathology , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Mammary Glands, Animal/pathology , STAT5 Transcription Factor/metabolism
7.
JCI Insight ; 7(11)2022 06 08.
Article En | MEDLINE | ID: mdl-35446789

Respiratory failure in COVID-19 is characterized by widespread disruption of the lung's alveolar gas exchange interface. To elucidate determinants of alveolar lung damage, we performed epithelial and immune cell profiling in lungs from 24 COVID-19 autopsies and 43 uninfected organ donors ages 18-92 years. We found marked loss of type 2 alveolar epithelial (T2AE) cells and increased perialveolar lymphocyte cytotoxicity in all fatal COVID-19 cases, even at early stages before typical patterns of acute lung injury are histologically apparent. In lungs from uninfected organ donors, there was also progressive loss of T2AE cells with increasing age, which may increase susceptibility to COVID-19-mediated lung damage in older individuals. In the fatal COVID-19 cases, macrophage infiltration differed according to the histopathological pattern of lung injury. In cases with acute lung injury, we found accumulation of CD4+ macrophages that expressed distinctly high levels of T cell activation and costimulation genes and strongly correlated with increased extent of alveolar epithelial cell depletion and CD8+ T cell cytotoxicity. Together, our results show that T2AE cell deficiency may underlie age-related COVID-19 risk and initiate alveolar dysfunction shortly after infection, and we define immune cell mediators that may contribute to alveolar injury in distinct pathological stages of fatal COVID-19.


Acute Lung Injury , COVID-19 , Acute Lung Injury/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Alveolar Epithelial Cells/pathology , Autopsy , Humans , Lung/pathology , Middle Aged , Young Adult
8.
Cancer Prev Res (Phila) ; 15(1): 3-10, 2022 01.
Article En | MEDLINE | ID: mdl-34667127

Current chemopreventive strategies require 3-5 years of continuous treatment and have the concerns of significant side effects; therefore, new chemopreventive agents that require shorter and safer treatments are urgently needed. In this study, we developed a new murine model of breast cancer that mimics human breast cancer initiation and is ideal for testing the efficacy of chemopreventive therapeutics. In this model, introduction of lentivirus carrying a PIK3CA gene mutant commonly found in breast cancers infects a small number of the mammary cells, leading to atypia first and then to ductal carcinomas that are positive for both estrogen receptor and progesterone receptor. Venetoclax is a BH3 mimetic that blocks the anti-apoptotic protein BCL-2 and has efficacy in treating breast cancer. We found that venetoclax treatment of atypia-bearing mice delayed the progression to tumors, improved overall survival, and reduced pulmonary metastasis. Therefore, prophylactic treatment to inhibit the pro-survival protein BCL-2 may provide an alternative to the currently available regimens in breast cancer prevention. PREVENTION RELEVANCE: This study demonstrates that prophylactic treatment with the BCL2-specific antagonist venetoclax prevents breast cancer initiated by a mutated and activated PIK3CA, the most common breast oncogene.


Breast Neoplasms , Animals , Apoptosis , Apoptosis Regulatory Proteins , Breast Neoplasms/pathology , Female , Humans , Mice , Proto-Oncogene Proteins c-bcl-2 , Receptors, Estrogen
9.
Cancer Res ; 81(17): 4441-4454, 2021 09 01.
Article En | MEDLINE | ID: mdl-34099494

Leucine-rich repeat-containing G protein-coupled receptors 4, 5, and 6 (LGR4/5/6) play critical roles in development and cancer. The widely accepted mechanism is that these proteins, together with their R-spondin ligands, stabilize Wnt receptors, thus potentiating Wnt signaling. Here we show that LGR4 enhanced breast cancer cell metastasis even when Wnt signaling was deactivated pharmacologically or genetically. Furthermore, LGR4 mutants that cannot potentiate Wnt signaling nevertheless promoted breast cancer cell migration and invasion in vitro and breast cancer metastasis in vivo. Multiomic screening identified EGFR as a crucial mediator of LGR4 activity in cancer progression. Mechanistically, LGR4 interacted with EGFR and blocked EGFR ubiquitination and degradation, resulting in persistent EGFR activation. Together, these data uncover a Wnt-independent LGR4-EGFR signaling axis with broad implications for cancer progression and targeted therapy. SIGNIFICANCE: This work demonstrates a Wnt-independent mechanism by which LGR4 promotes cancer metastasis.See related commentary by Stevens and Williams, p. 4397.


ErbB Receptors/metabolism , Neoplasm Metastasis , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Wnt Proteins/metabolism , Animals , Cell Line, Tumor , Cell Movement , Disease Progression , Female , HEK293 Cells , Humans , In Vitro Techniques , Kaplan-Meier Estimate , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation , Proteome/metabolism , Tissue Array Analysis , Ubiquitin/metabolism , Wnt Signaling Pathway
10.
Immunity ; 54(4): 797-814.e6, 2021 04 13.
Article En | MEDLINE | ID: mdl-33765436

Immune response dynamics in coronavirus disease 2019 (COVID-19) and their severe manifestations have largely been studied in circulation. Here, we examined the relationship between immune processes in the respiratory tract and circulation through longitudinal phenotypic, transcriptomic, and cytokine profiling of paired airway and blood samples from patients with severe COVID-19 relative to heathy controls. In COVID-19 airways, T cells exhibited activated, tissue-resident, and protective profiles; higher T cell frequencies correlated with survival and younger age. Myeloid cells in COVID-19 airways featured hyperinflammatory signatures, and higher frequencies of these cells correlated with mortality and older age. In COVID-19 blood, aberrant CD163+ monocytes predominated over conventional monocytes, and were found in corresponding airway samples and in damaged alveoli. High levels of myeloid chemoattractants in airways suggest recruitment of these cells through a CCL2-CCR2 chemokine axis. Our findings provide insights into immune processes driving COVID-19 lung pathology with therapeutic implications for targeting inflammation in the respiratory tract.


COVID-19/immunology , Lung/immunology , Myeloid Cells/immunology , Adolescent , Adult , Age Factors , Aged , Aged, 80 and over , COVID-19/blood , COVID-19/mortality , COVID-19/pathology , Cytokines/immunology , Cytokines/metabolism , Humans , Inflammation , Longitudinal Studies , Lung/pathology , Macrophages/immunology , Macrophages/pathology , Middle Aged , Monocytes/immunology , Monocytes/pathology , Myeloid Cells/pathology , SARS-CoV-2 , T-Lymphocytes/immunology , T-Lymphocytes/pathology , Transcriptome , Young Adult
11.
medRxiv ; 2020 Oct 18.
Article En | MEDLINE | ID: mdl-33106817

Immune responses to respiratory viruses like SARS-CoV-2 originate and function in the lung, yet assessments of human immunity are often limited to blood. Here, we conducted longitudinal, high-dimensional profiling of paired airway and blood samples from patients with severe COVID-19, revealing immune processes in the respiratory tract linked to disease pathogenesis. Survival from severe disease was associated with increased CD4 + T cells and decreased monocyte/macrophage frequencies in the airway, but not in blood. Airway T cells and macrophages exhibited tissue-resident phenotypes and activation signatures, including high level expression and secretion of monocyte chemoattractants CCL2 and CCL3 by airway macrophages. By contrast, monocytes in blood expressed the CCL2-receptor CCR2 and aberrant CD163 + and immature phenotypes. Extensive accumulation of CD163 + monocyte/macrophages within alveolar spaces in COVID-19 lung autopsies suggested recruitment from circulation. Our findings provide evidence that COVID-19 pathogenesis is driven by respiratory immunity, and rationale for site-specific treatment and prevention strategies.

12.
Mini Rev Med Chem ; 20(9): 779-787, 2020.
Article En | MEDLINE | ID: mdl-31902358

Chemotherapy employs anti-cancer drugs to stop the growth of cancerous cells, but one common obstacle to the success is the development of chemoresistance, which leads to failure of the previously effective anti-cancer drugs. Resistance arises from different mechanistic pathways, and in this critical review, we focus on the Fanconi Anemia (FA) pathway in chemoresistance. This pathway has yet to be intensively researched by mainstream cancer researchers. This review aims to inspire a new thrust toward the contribution of the FA pathway to drug resistance in cancer. We believe an indepth understanding of this pathway will open new frontiers to effectively treat drug-resistant cancer.


DNA Repair , Drug Resistance, Neoplasm , Fanconi Anemia Complementation Group Proteins/metabolism , Antineoplastic Agents/therapeutic use , Biomarkers/metabolism , DNA Repair/drug effects , Fanconi Anemia Complementation Group Proteins/antagonists & inhibitors , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Signal Transduction/drug effects , Small Molecule Libraries/chemistry , Small Molecule Libraries/metabolism , Small Molecule Libraries/pharmacology
13.
Nat Commun ; 10(1): 4042, 2019 09 06.
Article En | MEDLINE | ID: mdl-31492871

Tissue injury induces changes in cellular identity, but the underlying molecular mechanisms remain obscure. Here, we show that upon damage in a mouse model, epidermal cells at the wound edge convert to an embryonic-like state, altering particularly the cytoskeletal/extracellular matrix (ECM) components and differentiation program. We show that SOX11 and its closest relative SOX4 dictate embryonic epidermal state, regulating genes involved in epidermal development as well as cytoskeletal/ECM organization. Correspondingly, postnatal induction of SOX11 represses epidermal terminal differentiation while deficiency of Sox11 and Sox4 accelerates differentiation and dramatically impairs cell motility and re-epithelialization. Amongst the embryonic genes reactivated at the wound edge, we identify fascin actin-bundling protein 1 (FSCN1) as a critical direct target of SOX11 and SOX4 regulating cell migration. Our study identifies the reactivated embryonic gene program during wound repair and demonstrates that SOX11 and SOX4 play a central role in this process.


Gene Expression Profiling , Gene Expression Regulation, Developmental , SOXC Transcription Factors/genetics , Wound Healing/genetics , Wounds and Injuries/genetics , Animals , Cell Differentiation/genetics , Cell Movement/genetics , Cytoskeleton/metabolism , Epidermal Cells/cytology , Epidermal Cells/metabolism , Epidermis/embryology , Epidermis/metabolism , Extracellular Matrix , Mice , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , SOXC Transcription Factors/metabolism , Wounds and Injuries/embryology
14.
Stem Cells ; 36(10): 1603-1616, 2018 10.
Article En | MEDLINE | ID: mdl-29938858

The role of lipid metabolism in epithelial stem cell (SC) function and carcinogenesis is poorly understood. The transcription factor Runx1 is known to regulate proliferation in mouse epithelial hair follicle (HF) SCs in vivo and in several mouse and human epithelial cancers. We found a novel subset of in vivo Runx1 HFSC target genes related to lipid metabolism and demonstrated changes in distinct classes of lipids driven by Runx1. Inhibition of lipid-enzymes Scd1 and Soat1 activity synergistically reduces proliferation of mouse skin epithelial cells and of human skin and oral squamous cell carcinoma cultured lines. Varying Runx1 levels induces changes in skin monounsaturated fatty acids (e.g., oleate, a product of Scd1) as shown by our lipidome analysis. Furthermore, varying Runx1 levels, the inhibition of Scd1, or the addition of Scd1-product oleate, individually affects the plasma membrane organization (or fluidity) in mouse keratinocytes. These factors also affect the strength of signal transduction through the membranes for Wnt, a pathway that promotes epithelial (cancer) cell proliferation and HFSC activation. Our working model is that HFSC factor Runx1 modulates the fatty acid production, which affects membrane organization, facilitating signal transduction for rapid proliferation of normal and cancer epithelial cells. Stem Cells 2018;36:1603-1616.


Core Binding Factor Alpha 2 Subunit/metabolism , Epithelial Cells/metabolism , Stearoyl-CoA Desaturase/metabolism , Sterol O-Acyltransferase/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/physiology , Core Binding Factor Alpha 2 Subunit/biosynthesis , Core Binding Factor Alpha 2 Subunit/genetics , Epithelial Cells/cytology , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , Lipid Metabolism/genetics , Mice , Mice, Knockout , Mouth Neoplasms/metabolism , Mouth Neoplasms/pathology , Signal Transduction , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Squamous Cell Carcinoma of Head and Neck/metabolism , Squamous Cell Carcinoma of Head and Neck/pathology , Stearoyl-CoA Desaturase/genetics , Stem Cells/cytology , Stem Cells/metabolism , Sterol O-Acyltransferase/genetics , Transfection
15.
Elife ; 62017 05 03.
Article En | MEDLINE | ID: mdl-28467300

The transcription factor TCF7L1 is an embryonic stem cell signature gene that is upregulated in multiple aggressive cancer types, but its role in skin tumorigenesis has not yet been defined. Here we document TCF7L1 upregulation in skin squamous cell carcinoma (SCC) and demonstrate that TCF7L1 overexpression increases tumor incidence, tumor multiplicity, and malignant progression in the chemically induced mouse model of skin SCC. Additionally, we show that downregulation of TCF7L1 and its paralogue TCF7L2 reduces tumor growth in a xenograft model of human skin SCC. Using separation-of-function mutants, we show that TCF7L1 promotes tumor growth, enhances cell migration, and overrides oncogenic RAS-induced senescence independently of its interaction with ß-catenin. Through transcriptome profiling and combined gain- and loss-of-function studies, we identified LCN2 as a major downstream effector of TCF7L1 that drives tumor growth. Our findings establish a tumor-promoting role for TCF7L1 in skin and elucidate the mechanisms underlying its tumorigenic capacity.


Carcinogenesis , Carcinoma, Squamous Cell/physiopathology , Lipocalin-2/metabolism , Skin Neoplasms/physiopathology , Transcription Factor 7-Like 1 Protein/metabolism , beta Catenin/metabolism , Animals , Disease Models, Animal , Gene Expression Profiling , Heterografts , Humans , Mice
16.
Elife ; 52016 12 08.
Article En | MEDLINE | ID: mdl-27929373

Myeloid-derived suppressor cells (MDSC) contribute to an immunosuppressive network that drives cancer escape by disabling T cell adaptive immunity. The prevailing view is that MDSC-mediated immunosuppression is restricted to tissues where MDSC co-mingle with T cells. Here we show that splenic or, unexpectedly, blood-borne MDSC execute far-reaching immune suppression by reducing expression of the L-selectin lymph node (LN) homing receptor on naïve T and B cells. MDSC-induced L-selectin loss occurs through a contact-dependent, post-transcriptional mechanism that is independent of the major L-selectin sheddase, ADAM17, but results in significant elevation of circulating L-selectin in tumor-bearing mice. Even moderate deficits in L-selectin expression disrupt T cell trafficking to distant LN. Furthermore, T cells preconditioned by MDSC have diminished responses to subsequent antigen exposure, which in conjunction with reduced trafficking, severely restricts antigen-driven expansion in widely-dispersed LN. These results establish novel mechanisms for MDSC-mediated immunosuppression that have unanticipated implications for systemic cancer immunity.


Adaptive Immunity , Immune Tolerance , L-Selectin/biosynthesis , Lymph Nodes/immunology , Lymphocytes/immunology , Myeloid-Derived Suppressor Cells/physiology , Neoplasms/physiopathology , Animals , Cell Line, Tumor , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Lymphocytes/metabolism , Male , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Transgenic , Neoplasms/immunology , RNA Interference , Transplantation, Heterologous
17.
Methods Mol Biol ; 1481: 127-40, 2016.
Article En | MEDLINE | ID: mdl-27590159

Wnt signaling through ß-catenin plays a crucial role in skin development and homeostasis. Disruption or hyperactivation of this pathway results in skin defects and diseases (Lim and Nusse, Cold Spring Harb Perspect Biol 5(2), 2013). Monitoring Wnt signaling in skin under normal and abnormal conditions is therefore critical to understand the role of this pathway in development and homeostasis.In this chapter, we provide methods to detect Wnt/ß-catenin (canonical) signaling in the skin. We present a comprehensive list of Wnt reporter mice and detail the processing of skin tissue to detect reporter genes. From this list, we focus on the three most recent lines that, according to reports, are the most sensitive in skin. Additionally, we describe a protocol to detect nuclear ß-catenin, a hallmark of active Wnt signaling, although this technique should be used with caution due to its limited sensitivity. The techniques outlined below will be useful for detecting active Wnt signaling in skin.


Molecular Biology/methods , Skin/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/metabolism , Animals , Homeostasis , Mice , Skin/growth & development
18.
PLoS One ; 10(11): e0143370, 2015.
Article En | MEDLINE | ID: mdl-26599402

PURPOSE: While surgical resection is a cornerstone of cancer treatment, local and distant recurrences continue to adversely affect outcome in a significant proportion of patients. Evidence that an alternative debulking strategy involving radiofrequency ablation (RFA) induces antitumor immunity prompted the current investigation of the efficacy of performing RFA prior to surgical resection (pre-resectional RFA) in a preclinical mouse model. EXPERIMENTAL DESIGN: Therapeutic efficacy and systemic immune responses were assessed following pre-resectional RFA treatment of murine CT26 colon adenocarcinoma. RESULTS: Treatment with pre-resectional RFA significantly delayed tumor growth and improved overall survival compared to sham surgery, RFA, or resection alone. Mice in the pre-resectional RFA group that achieved a complete response demonstrated durable antitumor immunity upon tumor re-challenge. Failure to achieve a therapeutic benefit in immunodeficient mice confirmed that tumor control by pre-resectional RFA depends on an intact adaptive immune response rather than changes in physical parameters that make ablated tumors more amenable to a complete surgical excision. RFA causes a marked increase in intratumoral CD8+ T lymphocyte infiltration, thus substantially enhancing the ratio of CD8+ effector T cells: FoxP3+ regulatory T cells. Importantly, pre-resectional RFA significantly increases the number of antigen-specific CD8+ T cells within the tumor microenvironment and tumor-draining lymph node but had no impact on infiltration by myeloid-derived suppressor cells, M1 macrophages or M2 macrophages at tumor sites or in peripheral lymphoid organs (i.e., spleen). Finally, pre-resectional RFA of primary tumors delayed growth of distant tumors through a mechanism that depends on systemic CD8+ T cell-mediated antitumor immunity. CONCLUSION: Improved survival and antitumor systemic immunity elicited by pre-resectional RFA support the translational potential of this neoadjuvant treatment for cancer patients with high-risk of local and systemic recurrence.


Adaptive Immunity/drug effects , Adjuvants, Immunologic/pharmacology , Catheter Ablation , Colorectal Neoplasms/immunology , Colorectal Neoplasms/surgery , Neoplasm Recurrence, Local/prevention & control , Animals , Antigens/metabolism , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Cytokines/metabolism , Female , Lymph Nodes/drug effects , Lymph Nodes/pathology , Mice, Inbred BALB C , Mice, Inbred C57BL , Models, Biological , Neoplasm Invasiveness , Neoplasm Recurrence, Local/pathology , Survival Analysis , Tumor Microenvironment/drug effects
19.
Nat Commun ; 5: 4088, 2014 Jun 09.
Article En | MEDLINE | ID: mdl-24909826

Cell migration is an integral part of re-epithelialization during skin wound healing, a complex process involving molecular controls that are still largely unknown. Here we identify a novel role for Tcf3, an essential transcription factor regulating embryonic and adult skin stem cell functions, as a key effector of epidermal wound repair. We show that Tcf3 is upregulated in skin wounds and that Tcf3 overexpression accelerates keratinocyte migration and skin wound healing. We also identify Stat3 as an upstream regulator of Tcf3. We show that the promigration effects of Tcf3 are non-cell autonomous and occur independently of its ability to interact with ß-catenin. Finally, we identify lipocalin-2 as the key secreted factor downstream of Tcf3 that promotes cell migration in vitro and wound healing in vivo. Our findings provide new insights into the molecular controls of wound-associated cell migration and identify potential therapeutic targets for the treatment of defective wound repair.


Acute-Phase Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Movement/genetics , Keratinocytes , Lipocalins/metabolism , Oncogene Proteins/metabolism , Re-Epithelialization/genetics , STAT3 Transcription Factor/metabolism , Skin/metabolism , Wound Healing/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Movement/physiology , Lipocalin-2 , Mice , Mice, Knockout , Re-Epithelialization/physiology , Skin/cytology , Wound Healing/physiology , beta Catenin/metabolism
20.
PLoS One ; 9(2): e89396, 2014.
Article En | MEDLINE | ID: mdl-24586748

PiggyBac is a prevalent transposon system used to deliver transgenes and functionally explore the mammalian untouched genomic territory. The important features of piggyBac transposon are the relatively low insertion site preference and the ability of seamless removal from genome, which allow its potential uses in functional genomics and regenerative medicine. Efforts to increase its transposition efficiency in mammals were made through engineering the corresponding transposase (PBase) codon usage to enhance its expression level and through screening for mutant PBase variants with increased enzyme activity. To improve the safety for its potential use in regenerative medicine applications, site-specific transposition was achieved by using engineered zinc finger- and Gal4-fused PBases. An excision-prone PBase variant has also been successfully developed. Here we describe the construction of a nucleolus-predominant PBase, NP-mPB, by adding a nucleolus-predominant (NP) signal peptide from HIV-1 TAT protein to a mammalian codon-optimized PBase (mPB). Although there is a predominant fraction of the NP-mPB-tGFP fusion proteins concentrated in the nucleoli, an insertion site preference toward nucleolar organizer regions is not detected. Instead a 3-4 fold increase in piggyBac transposition efficiency is reproducibly observed in mouse and human cells.


Cell Nucleolus/genetics , Cell Nucleolus/metabolism , DNA Transposable Elements/genetics , Mammals/metabolism , Transgenes/genetics , Transposases/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Codon/genetics , Genome/genetics , HEK293 Cells , HIV-1/genetics , HIV-1/metabolism , HeLa Cells , Humans , Mice , Mutagenesis, Insertional/methods , Zinc Fingers/genetics
...