Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters











Publication year range
1.
Luminescence ; 39(9): e4875, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39228310

ABSTRACT

The modern nanomedicine incorporates the multimodal treatments into a single formulation, offering innovative cancer therapy options. Nanosheets function as carriers, altering the solubility, biodistribution, and effectiveness of medicinal compounds, resulting in more efficient cancer treatments and reduced side effects. The non-toxic nature of fluorinated graphene oxide (FGO) nanosheets and their potential applications in medication delivery, medical diagnostics, and biomedicine distinguish them from others. Leveraging the unique properties of Lissachatina fulica snail mucus (LfSM), FGO nanosheets were developed to reveal the novel characteristics. Consequently, LfSM was utilized to create non-toxic, environmentally friendly, and long-lasting FGO nanosheets. Ultraviolet-visible (UV-vis) spectroscopy revealed a prominent absorbance peak at 235 nm. The characterization of the synthesized FGO nanosheets involved X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HR-TEM), and atomic force microscopy (AFM) analyses. The antimicrobial activity data demonstrated a broad spectrum of antibacterial effects against Escherichia coli, Bacillus subtilis, Klebsiella pneumoniae, and Pseudomonas aeruginosa. The cytotoxicity efficacy of LfSM-FGO nanosheets against pancreatic cancer cell line (PANC1) showed promising results at low concentrations. The study suggests that FGO nanosheets made from LfSM could serve as alternate factors for in biomedical applications in the future.


Subject(s)
Graphite , Nanostructures , Snails , Graphite/chemistry , Graphite/pharmacology , Animals , Snails/chemistry , Humans , Nanostructures/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Microbial Sensitivity Tests , Mucus/chemistry , Mucus/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Halogenation , Cell Survival/drug effects , Escherichia coli/drug effects , Cell Line, Tumor , Particle Size
2.
Antibiotics (Basel) ; 12(9)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37760704

ABSTRACT

In the present study, the antimicrobial peptide nisin was successfully conjugated onto the surface of sulfonated polyetheretherketone (SPEEK), which was decorated with graphene oxide (GO) to investigate its biofilm resistance and antibacterial properties. The PEEK was activated with sulfuric acid, resulting in a porous structure. The GO deposition fully covered the porous SPEEK specimen. The nisin conjugation was accomplished using the crosslinker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) through a dip-coating method. The surface micrographs of the SPEEK-GO-nisin sample indicated that nisin formed discrete islets on the flat GO surface, allowing both the GO and nisin to perform a bactericidal effect. The developed materials were tested for bactericidal efficacy against Staphylococcus aureus (S. aureus). The SPEEK-GO-nisin sample had the highest antibacterial activity with an inhibition zone diameter of 27 mm, which was larger than those of the SPEEK-nisin (19 mm) and SPEEK-GO (10 mm) samples. Conversely, no inhibitory zone was observed for the PEEK and SPEEK samples. The surface micrographs of the bacteria-loaded SPEEK-GO-nisin sample demonstrated no bacterial adhesion and no biofilm formation. The SPEEK-nisin and SPEEK-GO samples showed some bacterial attachment, whereas the pure PEEK and SPEEK samples had abundant bacterial colonies and thick biofilm formation. These results confirmed the good biofilm resistance and antibacterial efficacy of the SPEEK-GO-nisin sample, which is promising for implantable orthopedic applications.

4.
Chemosphere ; 308(Pt 3): 136452, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36116630

ABSTRACT

Community/industrial wastewater is the prime source of anthropogenic chemicals, its treatment is often a daunting task and unaffordable for many countries. Emerging Contaminants (ECs) have been drained into wastewater after continuous use/misuse and Conventional treatments in STPs do not remove them completely. ECs including antimicrobial agents, synthetic musks, Benzotriazole UV stabilizers (BUVSs), plasticizers, and preservatives are frequently reported in environment, and cause health effects to non-target organisms. Monitoring of ECs is important to understand their status in aquatic environment. Hence, it was aimed to monitor ECs (n = 21) from 11 STPs in Tamil Nadu, India. The detection frequency of most of these analytes was >90%. Antimicrobials ranged from 247 to 22,714 ng/L and 11-14,369 ng/L in influents and effluents, respectively. The synthetic musks were in the order of Tonalide > Galaxolide > Musk Ketone. BUVSs ranged from 4 to 1632 ng/L (influents) and < LOD to 29,853 ng/L (effluents). Concentration of phthalates in influents and effluents were < LOD - 11,311 ng/L and < LOD - 17,618 ng/L, respectively. Parabens were found in the order of Prophyl > Methyl > Ethyl > Butyl in influents and Methyl > Prophyl > Butyl > Ethyl in effluents. Mass loads of ECs through STPs were found as antimicrobials > plasticizers > fragrances > BUVSs > Preservatives. This study reveals increasing usage of ECs and inadequate treatment processes at STPs in India. Also helps to adopt suitable treatment processes to remove ECs from wastewater and to reuse the wastewater.


Subject(s)
Anti-Infective Agents , Perfume , Water Pollutants, Chemical , Environmental Monitoring , India , Odorants , Parabens , Perfume/analysis , Plasticizers/analysis , Preservatives, Pharmaceutical , Risk Assessment , Sewage/chemistry , Wastewater , Water Pollutants, Chemical/analysis
5.
J Colloid Interface Sci ; 626: 524-534, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35809441

ABSTRACT

In this study, a dense polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) coating is fabricated on a lithium (Li) anode sheet, which acts as a synergistic protective layer and electrolyte separator for Li-oxygen (Li-O2) batteries. This thin coating is dried through slow solvent evaporation and vacuum drying methods. The solvent-free, dense PVDF-HFP coating has a thickness of 45 µm and can absorb 62% of electrolyte. The battery containing the PVDF-HFP coating demonstrates a maximum peak power density of 3 mW cm-2, significantly higher than that of the battery with the PVDF coating (0.8 mW cm-2) but lower than that without coating (equipped with a commercial glass fiber separator, 7.3 mW cm-2). However, the PVDF-HFP coating enables the Li-O2 battery to reach a capacity of 4400 mA h g-1, much higher than that without the coating (glass fiber separator, 850 mA h g-1). The symmetric Li-Li cells further confirm steady and low overpotentials using the anode coating at a high current density of 1.0 mA cm-2, indicating stable Li plating/stripping process. The PVDF-HFP-coated battery has a longer cycling lifetime (1700 h) than those with the PVDF coating (120 h) and a glass fiber separator (670 h). The Raman spectra show that there are lithium compounds (mainly lithium hydroxide) and residual PVDF-HFP on the aged anode surface. The dense PVDF-HFP coating on the Li anode plays dual roles: it creates a strong protective layer for stabilizing the solid-electrolyte interface (in the solid phase), and acts as a separator for modulating the Li metal deposition and stripping behaviors in liquid electrolyte.

6.
Pharmaceutics ; 14(5)2022 Apr 24.
Article in English | MEDLINE | ID: mdl-35631509

ABSTRACT

Spherical silver nanoparticles (Ag NPs) and silver nanoprisms (Ag NPrsms) were synthesized and decorated on graphene oxide (GO) nanosheets. The Ag contents were 29% and 23% in the GO−Ag NPs and GO−Ag NPrsms, respectively. The Ag NPrsms exhibited stronger (111) crystal signal than Ag NPs. The GO−Ag NPrsms exhibited higher Ag (I) content (75.6%) than GO-Ag NPs (69.9%). Increasing the nanomaterial concentration from 25 to 100 µg mL−1 improved the bactericidal efficiency, and the antibacterial potency was in the order: GO−Ag NPrsms > GO−Ag NPs > Ag NPrsms > Ag NPs > GO. Gram-positive Staphylococcus aureus (S. aureus) was more vulnerable than Gram-negative Escherichia coli (E. coli) upon exposure to these nanomaterials. The GO−Ag NPrsms demonstrated a complete (100%) bactericidal effect against S. aureus at a concentration of 100 µg mL−1. The GO−Ag composites outperformed those of Ag or GO due to the synergistic effect of bacteriostatic Ag particles and GO affinity toward bacteria. The levels of reactive oxygen species produced in the bacteria−nanomaterial mixtures were highly correlated to the antibacterial efficacy values. The GO−Ag NPrsms are promising as bactericidal agents to suppress biofilm formation and inhibit bacterial infection.

7.
Nanomaterials (Basel) ; 12(5)2022 03 04.
Article in English | MEDLINE | ID: mdl-35269354

ABSTRACT

The present work investigates the direct mixing of aqueous zeolitic imidazolate framework-8 (ZIF-8) suspension into a polyvinyl alcohol (PVA) and crosslinked with glutaraldehyde (GA) to form swelling-resistant, mechanically robust and conductivity retentive composite membranes. This drying-free nanofiller incorporation method enhances the homogeneous ZIF-8 distributions in the PVA/ZIF-8/GA composites to overcome the nanofiller aggregation problem in the mixed matrix membranes. Various ZIF-8 concentrations (25.4, 40.5 and 45.4 wt.%) are used to study the suitability of the resulting GA-crosslinked composites for direct alkaline methanol fuel cell (DAMFC). Surface morphological analysis confirmed homogeneous ZIF-8 particle distribution in the GA-crosslinked composites with a defect- and crack-free structure. The increased ionic conductivity (21% higher than the ZIF-free base material) and suppressed alcohol permeability (94% lower from the base material) of PVA/40.5%ZIF-8/GA resulted in the highest selectivity among the prepared composites. In addition, the GA-crosslinked composites' selectivity increased to 1.5−2 times that of those without crosslink. Moreover, the ZIF-8 nanofillers improved the mechanical strength and alkaline stability of the composites. This was due to the negligible volume swelling ratio (<1.4%) of high (>40%) ZIF-8-loaded composites. After 168 h of alkaline treatment, the PVA/40.5%ZIF-8/GA composite had almost negligible ionic conductivity loss (0.19%) compared with the initial material. The maximum power density (Pmax) of PVA/40.5%ZIF-8/GA composite was 190.5 mW cm−2 at 60 °C, an increase of 181% from the PVA/GA membrane. Moreover, the Pmax of PVA/40.5%ZIF-8/GA was 10% higher than that without GA crosslinking. These swelling-resistant and stable solid electrolytes are promising in alkaline fuel cell applications.

8.
Membranes (Basel) ; 13(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36676847

ABSTRACT

This research demonstrates the preparation of composite membranes containing graphene oxide (GO) and investigates the separation mechanisms of various salts and bovine serum albumin (BSA) solutions. A microporous polyvinylidene fluoride-polyacrylic acid-GO (PVDF-PAA-GO) separation layer was fabricated on non-woven support. The GO-incorporating composite resulted in enlarged pore size (0.16 µm) compared with the control membrane (0.12 µm). The zeta potential of the GO composite was reduced to -31 from -19 mV. The resulting membranes with and without GO were examined for water permeability and rejection efficiency with single salt and BSA solutions. Using the non-woven/PVDF-PAA composite, the permeance values were 88-190 kg/m2hMPa, and the salt rejection coefficients were 9-28% for Na2SO4, MgCl2, MgSO4, and NaCl solutions. These salt removals were based on the Donnan exclusion mechanism considering the ion radii and membrane pore size. Incorporating GO into the separation layer exhibited limited impacts on the filtration of salt solutions, but significantly reduced BSA membrane adhesion and increased permeance. The negatively charged protein reached almost complete removal (98.4%) from the highly negatively charged GO-containing membrane. The GO additive improved the anti-fouling property of the composite membrane and enhanced BSA separation from the salt solution.

9.
Materials (Basel) ; 14(6)2021 Mar 13.
Article in English | MEDLINE | ID: mdl-33805683

ABSTRACT

The objectives of this work aim to investigate the interaction and cytotoxicity between nanometric graphene oxide (GO) and nasopharyngeal carcinoma cells (NPC-BM1), and possible application in photon therapy. GO nanosheets were obtained in the size range of 100-200 nm, with a negative surface charge. This nanometric GO exhibited a limited (<10%) cytotoxicity effect and no significant dimensional change on NPC-BM1 cells in the tested GO concentration range (0.1-10 µg·mL-1). However, the secondary protein structure was modified in the GO-treated NPC-BM1 cells, as determined through synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIRM) mapping. To further study the cellular response of GO-treated NPC-BM1 cancer cells at low GO concentration (0.1 µg·mL-1), photon radiation was applied with increasing doses, ranging from 2 to 8 Gy. The low radiation energy (<5 Gy) did not cause significant cell mortality (5-7%). Increasing the radiation energy to 6-8 Gy accelerated cell apoptosis rate, especially in the GO-treated NPC-BM1 cells (27%). This necrosis may be due to GO-induced conformational changes in protein and DNA/RNA, resulting in cell vulnerability under photon radiation. The findings of the present work demonstrate the potential biological applicability of nanometric GO in different areas, such as targeted drug delivery, cellular imaging, and radiotherapy, etc.

10.
Int J Mol Sci ; 23(1)2021 Dec 29.
Article in English | MEDLINE | ID: mdl-35008782

ABSTRACT

In the present work, the antimicrobial peptide (AMP) of GL13K was successfully coated onto a polyetheretherketone (PEEK) substrate to investigate its antibacterial activities against Staphylococcus aureus (S. aureus) bacteria. To improve the coating efficiency, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) was mixed with a GL13K solution and coated on the PEEK surface for comparison. Both energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) data confirmed 30% greater peptide coating on PEEK/GL13K-EDC than PEEK without EDC treatment. The GL13K graft levels are depicted in the micrograms per square centimeter range. The PEEK/GL13K-EDC sample showed a smoother and lower roughness (Rq of 0.530 µm) than the PEEK/GL13K (0.634 µm) and PEEK (0.697 µm) samples. The surface of the PEEK/GL13K-EDC was more hydrophilic (with a water contact angle of 24°) than the PEEK/GL13K (40°) and pure PEEK (89°) samples. The pure PEEK disc did not exhibit any inhibition zone against S. aureus. After peptide coating, the samples demonstrated significant zones of inhibition: 28 mm and 25 mm for the PEEK/GL13K-EDC and PEEK/GL13K samples, respectively. The bacteria-challenged PEEK sample showed numerous bacteria clusters, whereas PEEK/GL13K contained a little bacteria and PEEK/GL13K-EDC had no bacterial attachment. The results confirm that the GL13K peptide coating was able to induce antibacterial and biofilm-inhibitory effects. To the best of our knowledge, this is the first report of successful GL13K peptide grafting on a PEEK substrate via EDC coupling. The present work illustrates a facile and promising coating technique for a polymeric surface to provide bactericidal activity and biofilm resistance to medical implantable devices.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzophenones/chemistry , Ethyldimethylaminopropyl Carbodiimide/chemistry , Oligopeptides/pharmacology , Polymers/chemistry , Bacterial Adhesion/drug effects , Biofilms/drug effects , Microbial Sensitivity Tests , Microscopy, Atomic Force , Photoelectron Spectroscopy , Spectrometry, X-Ray Emission , Staphylococcus aureus/drug effects , Surface Properties , X-Ray Diffraction
11.
Nanomaterials (Basel) ; 10(6)2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32575669

ABSTRACT

A series of graphene oxide (GO) suspensions with different particle sizes (<100 nm, ~100 nm, ~1 µm and >1 µm) were successfully fabricated after 0, 30, 60 and 120 min of sonication, respectively. The antibacterial properties of GO suspensions showed that >1 µm GO size resulted in a loss of nearly 50% of bacterial viability, which was higher than treatment by ~100 nm GO size (25%) towards Escherichia coli (E. coli). Complete entrapment of bacteria by the larger GO was observed in transmission electron microscopy (TEM). Silver nanoparticles (Ag NPs) were doped onto GO samples with different lateral sizes to form GO-Ag NP composites. Resulting larger GO-Ag NPs showed higher antibacterial activity than smaller GO-Ag NPs. As observed by Fourier transform infrared spectroscopy (FTIR), the interaction between E. coli and GO occurred mainly at the outer membrane, where membrane amino acids interact with hydroxyl and epoxy groups. The reactive oxygen species (ROS) and the considerable penetration of released Ag+ into the inner bacterial cell membrane result in loss of membrane integrity and damaged morphology. The present work improves the combined action of GO size effect with constant Ag loadings for potential antibacterial activity.

12.
Nanomaterials (Basel) ; 10(4)2020 Apr 20.
Article in English | MEDLINE | ID: mdl-32326053

ABSTRACT

This study investigates the permeance and rejection efficiencies of different dyes (Rhodamine B and methyl orange), folic acid and a protein (bovine serum albumin) using graphene oxide composite membrane. The ultrathin separation layer of graphene oxide (thickness of 380 nm) was successfully deposited onto porous polyvinylidene fluoride-polyacrylic acid intermediate layer on nonwoven support layer using vacuum filtration. The graphene oxide addition in the composite membrane caused an increased hydrophilicity and negative surface charge than those of the membrane without graphene oxide. In the filtration process using a graphene oxide composite membrane, the permeance values of pure water, dyes, folic acid and bovine serum albumin molecules were more severely decreased (by two orders of magnitude) than those of the nonwoven/polyvinylidene fluoride-polyacrylic acid composite membrane. However, the rejection efficiency of the graphene oxide composite was significantly improved in cationic Rhodamine B (from 9% to 80.3%) and anionic methyl orange (from 28.3% to 86.6%) feed solutions. The folic acid and bovine serum albumin were nearly completely rejected from solutions using either nonwoven/polyvinylidene fluoride-polyacrylic acid or nonwoven/polyvinylidene fluoride-polyacrylic acid/graphene oxide composite membrane, but the latter possessed anti-fouling property against the protein molecules. The separation mechanism in nonwoven/polyvinylidene fluoride-polyacrylic acid membrane includes the Donnan exclusion effect (for smaller-than-pore-size solutes) and sieving mechanism (for larger solutes). The sieving mechanism governs the filtration behavior in the nonwoven/polyvinylidene fluoride-polyacrylic acid/graphene oxide composite membrane.

13.
Nanomaterials (Basel) ; 10(2)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093180

ABSTRACT

In this study, the physicochemical and surface properties of the GO-Ag composite promote a synergistic antibacterial effect towards both Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. Aureus) bacteria. GO-Ag NPs have a better bactericidal effect on E. coli (73%) and S. Aureus (98.5%) than pristine samples (pure Ag or GO). Transmission electron microscopy (TEM) confirms that the GO layers folded entire bacteria by attaching to the membrane through functional groups, while the Ag NPs penetrated the inner cell, thus damaging the cell membrane and leading to cell death. Cyclic voltammetry (CV) tests showed significant redox activity in GO-Ag NPs, enabling good catalytic performance towards H2O2 reduction. Strong reactive oxygen species (ROS) in GO-Ag NPs suggests that ROS might be associated with bactericidal activity. Therefore, the synergy between the physicochemical effect and ROS production of this material is proposed as the mechanism of its antibacterial activity.

14.
Nanoscale Adv ; 2(8): 3209-3221, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-36134298

ABSTRACT

Porous iron oxide nanostructures have attracted increasing attention due to their potential biomedical applications as nanocarriers for cancer and many other therapies as well as minimal toxicity. Herbal anti-cancer agent thymoquinone loaded on Fe3O4 nanoparticles is envisaged to offer solution towards cancer treatment. The purpose of the present study was to investigate the efficacy of thymoquinone-loaded PVPylated Fe3O4 magnetic nanoparticles (TQ-PVP-Fe3O4 NPs) against triple-negative breast cancer (TNBC) cells. The porous PVPylated Fe3O4 NPs were prepared by a simple solvothermal process, whereas the thymoquinone drug was loaded via the nanoprecipitation method. Fourier transform infrared (FTIR) spectroscopic analysis confirmed the molecular drug loading, and surface morphological observation further confirmed this. The quantity of thymoquinone adsorbed onto the porous PVPylated Fe3O4 NPs was studied by thermogravimetric analysis (TGA). The positive surface charge of TQ-PVP-Fe3O4 NPs facilitates the interaction of the NPs with cancer (MDA-MB-231) cells to enhance the biological functions. In addition, the anticancer potential of NPs involving cytotoxicity, apoptosis induction, reactive oxygen species (ROS) generation, and changes in the mitochondrial membrane potential (ΔΨ m) of TNBC cells was evaluated. TQ-PVP-Fe3O4 NP-treated cells effectively increased the ROS levels leading to cellular apoptosis. The study shows that the synthesized TQ-PVP-Fe3O4 NPs display pH-dependent drug release in the cellular environment to induce apoptosis-related cell death in TNBC cells. Hence, the prepared TQ-PVP-Fe3O4 NPs may be a suitable drug formulation for anticancer therapy.

15.
Nanomaterials (Basel) ; 9(7)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261737

ABSTRACT

Poor osteogenesis and bacterial infections lead to an implant failure, so the enhanced osteogenic and antimicrobial activity of the implantable device is of great importance in orthopedic applications. In this study, 2-methacryloyloxyethyl phosphocholine (MPC) was grafted onto 316L stainless steel (SS) using a facile photo-induced radical graft polymerization method via a benzophenone (BP) photo initiator. Atomic force microscopy (AFM) was employed to determine the nanoscale morphological changes on the surface. The grafted BP-MPC layer was estimated to be tens of nanometers thick. The SS-BP-MPC composite was more hydrophilic and smoother than the untreated and BP-treated SS samples. Staphylococcus aureus (S. aureus) bacteria binding onto the SS-BP-MPC composite film surface was significantly reduced compared with the pristine SS and SS-BP samples. Mouse pre-osteoblast (MC3T3-E1) cells showed good adhesion on the MPC-modified samples and better proliferation and metabolic activity (73% higher) than the pristine SS sample. Biological studies revealed that grafting MPC onto the SS substrate enhanced the antibacterial efficiency and also retained osteoblast biocompatibility. This proposed procedure is promising for use with other implant materials.

16.
Sci Total Environ ; 625: 1351-1360, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29996432

ABSTRACT

Triclocarban and benzotriazole ultraviolet stabilizers (BUVSs) are listed as high production volume synthetic chemicals, used extensively in personal care products. Many of these chemicals persist in the aquatic environment as micropollutants. Knowledge on their fate in freshwater ecosystems is still lacking, especially in the Indian Rivers. Our intention is to study the seasonal distribution, hazard quotient, risk assessment, and bioaccumulation of triclocarban and BUVSs (UV-9, UV-P, UV-326, UV-327, UV-328, and UV-329) during wet and dry seasons in water, sediment and fish from the Kaveri, Vellar, and Thamiraparani rivers in Tamil Nadu State, India. Triclocarban and BUVSs were identified in all matrices analysed. Triclocarban was found in water, sediment, and fish up to 1119ng/L, 26.3ng/g (dry wt.), and 692ng/g (wet wt.), respectively. Among BUVSs, UV-329 was found up to 31.3ng/L (water samples), UV-327 up to 7.3ng/g (sediment samples), and UV-9 up to 79.4ng/g (fish samples). The hazard quotient (HQenv.) for triclocarban in surface water was found to be at risk level (HQenv. >1) in the Kaveri, and Thamiraparani rivers during dry season. Bioaccumulation factors indicate that target compounds (triclocarban and BUVSs) could bio-accumulate in organisms.

17.
Nanomaterials (Basel) ; 8(3)2018 Mar 14.
Article in English | MEDLINE | ID: mdl-29538336

ABSTRACT

In this work, silver nanoparticles (Ag NPs) were decorated on thiol (-SH) grafted graphene oxide (GO) layers to investigate the antibacterial activities in Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Pseudomonas aeruginosa). The quasi-spherical, nano-sized Ag NPs were attached to the GO surface layers, as confirmed by using field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM), respectively. The average size of GO-Ag nanocomposites was significantly reduced (327 nm) from those of pristine GO (962 nm) while the average size of loaded Ag NPs was significantly smaller than the Ag NPs without GO. Various concentrations of AgNO3 solutions (0.1, 0.2, and 0.25 M) were loaded into GO nanosheets and resulted in the Ag contents of 31, 43, and 65%, respectively, with 1-2 nm sizes of Ag NPs anchored on the GO layers. These GO-Ag samples have negative surface charges but the GO-Ag 0.2 M sample (43% Ag) demonstrated the highest antibacterial efficiency. At 10 ppm load of GO-Ag suspension, only a GO-Ag 0.2 M sample yielded slight bacterial inhibition (5.79-7.82%). As the GO-Ag content was doubled to 20 ppm, the GO-Ag 0.2 M composite exhibited ~49% inhibition. When the GO-Ag 0.2 M composite level was raised to 100 ppm, almost 100% inhibition efficiencies were found on both Staphylococcus aureus (S.A.) and Pseudomonas aeruginosa (P.A.), which were significantly higher than using pristine GO (27% and 33% for S.A. and P.A.). The combined effect of GO and Ag nanoparticles demonstrate efficient antibacterial activities.

18.
Article in English | MEDLINE | ID: mdl-29427905

ABSTRACT

Six phthalic acid esters (PAEs) in human urine sampled randomly from three districts (Erode, Thanjavur, and Perambalur) in Tamil Nadu State and a Union Territory (Pondicherry) in India were quantified. We determined gender-wise, age-wise and location-wise distribution of PAEs and measured estrogenic activity of urine by molecular docking. Bis(2­ethylhexyl) phthalate (DEHP) was the predominant phthalic acid ester found and had a recovery of 104.5% (ultrasonic extraction at 15 min). Gender-wise (pregnant women: 185 ng/mL, children: 156 ng/mL, female: 151 ng/mL, and male: 138 ng/mL), age-wise (1-20 y: 157 ng/mL, 21-40 y: 156 ng/mL, and >40 y: 146 ng/mL), location-wise (urban: 154 ng/mL, and rural: 151 ng/mL), and region-wise (Erode district: 185 ng/mL, Thanjavur district: 155 ng/mL, Perambalur district: 117 ng/mL, and Pondicherry: 135 ng/mL) differences with total mean of Σ6 PAEs were found. The molecular docking study showed a high negative binding energy of PAEs with microbial receptors. Based on the results we conclude that urine could be used as an ideal biomarker to understand PAEs exposure in humans.


Subject(s)
Phthalic Acids/urine , Adolescent , Adult , Aged , Aged, 80 and over , Biomarkers/urine , Child , Child, Preschool , Esters/urine , Female , Gas Chromatography-Mass Spectrometry , Humans , Infant , Male , Middle Aged , Molecular Docking Simulation , Young Adult
19.
Polymers (Basel) ; 10(1)2018 Jan 22.
Article in English | MEDLINE | ID: mdl-30966138

ABSTRACT

Having a secure and stable energy supply is a top priority for the global community. Fuel-cell technology is recognized as a promising electrical energy generation system for the twenty-first century. Polyvinyl alcohol/zeolitic imidazolate framework-8 (PVA/ZIF-8) composite membranes were successfully prepared in this work from direct ZIF-8 suspension solution (0⁻45.4 wt %) and PVA mixing to prevent filler aggregation for direct methanol alkaline fuel cells (DMAFCs). The ZIF-8 fillers were chosen for the appropriate cavity size as a screening aid to allow water and suppress methanol transport. Increased ionic conductivities and suppressed methanol permeabilities were achieved for the PVA/40.5% ZIF-8 composites, compared to other samples. A high power density of 173.2 mW cm-2 was achieved using a KOH-doped PVA/40.5% ZIF-8 membrane in a DMAFC at 60 °C with 1⁻2 mg cm-2 catalyst loads. As the filler content was raised beyond 45.4 wt %, adverse effects resulted and the DMAFC performance (144.9 mW cm-2) was not improved further. Therefore, the optimal ZIF-8 content was approximately 40.5 wt % in the polymeric matrix. The specific power output was higher (58 mW mg-1) than most membranes reported in the literature (3⁻18 mW mg-1).

SELECTION OF CITATIONS
SEARCH DETAIL