Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Front Plant Sci ; 9: 574, 2018.
Article in English | MEDLINE | ID: mdl-29868048

ABSTRACT

The domestication syndrome of many plants includes changes in their mating systems. The evolution of the latter is shaped by ecological and genetic factors that are particular to an area. Thus, the reproductive biology of wild relatives must be studied in their natural distribution to understand the mating system of a crop species as a whole. Gossypium hirsutum (upland cotton) includes both domesticated varieties and wild populations of the same species. Most studies on mating systems describe cultivated cotton as self-pollinated, while studies on pollen dispersal report outcrossing; however, the mating system of upland cotton has not been described as mixed and little is known about its wild relatives. In this study we selected two wild metapopulations for comparison with domesticated plants and one metapopulation with evidence of recent gene flow between wild relatives and the crop to evaluate the mating system of cotton's wild-to-domesticated complex. Using classic reproductive biology methods, our data demonstrate that upland cotton presents a mixed mating system throughout the complex. Given cotton's capacity for outcrossing, differences caused by the domestication process in cultivated individuals can have consequences for its wild relatives. This characterization of the diversity of the wild relatives in their natural distribution, as well as their interactions with the crop, will be useful to design and implement adequate strategies for conservation and biosecurity.

2.
Am Nat ; 178(5): 602-11, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22030730

ABSTRACT

The species-area relationship (SAR) is considered to be one of a few generalities in ecology, yet a universal model of its shape and slope has remained elusive. Recently, Harte et al. argued that the slope of the SAR for a given area is driven by a single parameter, the ratio between total number of individuals and number of species (i.e., the mean population size across species at a given scale). We provide a geometric interpretation of this dependence. At the same time, however, we show that this dependence cannot be universal across taxa: if it holds for a taxon composed from two subsets of species and also for one of its subsets, it cannot simultaneously hold for the other subset. Using three data sets, we show that the slope of the SAR considerably varies around the prediction. We estimate the limits of this variation by using geometric considerations, providing a theory based on species spatial turnover at different scales. We argue that the SAR cannot be strictly universal, but its slope at each particular scale varies within the constraints given by species' spatial turnover at finer spatial scales, and this variation is biologically informative.


Subject(s)
Biodiversity , Birds , Fishes , Models, Biological , Trees , Animals , Czech Republic , Demography , Ecosystem , Geography , Mediterranean Sea , Panama , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL