Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Leukemia ; 33(4): 981-994, 2019 04.
Article in English | MEDLINE | ID: mdl-30185934

ABSTRACT

In chronic myeloid leukemia (CML), tyrosine kinase inhibitor (TKI) treatment induces autophagy that promotes survival and TKI-resistance in leukemic stem cells (LSCs). In clinical studies hydroxychloroquine (HCQ), the only clinically approved autophagy inhibitor, does not consistently inhibit autophagy in cancer patients, so more potent autophagy inhibitors are needed. We generated a murine model of CML in which autophagic flux can be measured in bone marrow-located LSCs. In parallel, we use cell division tracing, phenotyping of primary CML cells, and a robust xenotransplantation model of human CML, to investigate the effect of Lys05, a highly potent lysosomotropic agent, and PIK-III, a selective inhibitor of VPS34, on the survival and function of LSCs. We demonstrate that long-term haematopoietic stem cells (LT-HSCs: Lin-Sca-1+c-kit+CD48-CD150+) isolated from leukemic mice have higher basal autophagy levels compared with non-leukemic LT-HSCs and more mature leukemic cells. Additionally, we present that while HCQ is ineffective, Lys05-mediated autophagy inhibition reduces LSCs quiescence and drives myeloid cell expansion. Furthermore, Lys05 and PIK-III reduced the number of primary CML LSCs and target xenografted LSCs when used in combination with TKI treatment, providing a strong rationale for clinical use of second generation autophagy inhibitors as a novel treatment for CML patients with LSC persistence.


Subject(s)
Aminoquinolines/pharmacology , Autophagy , Drug Resistance, Neoplasm/drug effects , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Neoplastic Stem Cells/pathology , Polyamines/pharmacology , Animals , Apoptosis , Cell Proliferation , Fusion Proteins, bcr-abl/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Protein Kinase Inhibitors/pharmacology , Tumor Cells, Cultured
2.
Mol Cell Oncol ; 5(1): e1403532, 2018.
Article in English | MEDLINE | ID: mdl-29404396

ABSTRACT

We have recently uncovered an abnormal increase in mitochondrial oxidative metabolism in therapy-resistant chronic myeloid leukaemia stem cells (LSCs). By simultaneously disrupting mitochondrial respiration and inhibiting BCR-ABL kinase activity using the antibiotic tigecycline and imatinib respectively, we effectively eradicated LSCs and prevented disease relapse in pre-clinical animal models.

3.
Nat Med ; 23(10): 1234-1240, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28920959

ABSTRACT

Treatment of chronic myeloid leukemia (CML) with imatinib mesylate and other second- and/or third-generation c-Abl-specific tyrosine kinase inhibitors (TKIs) has substantially extended patient survival. However, TKIs primarily target differentiated cells and do not eliminate leukemic stem cells (LSCs). Therefore, targeting minimal residual disease to prevent acquired resistance and/or disease relapse requires identification of new LSC-selective target(s) that can be exploited therapeutically. Considering that malignant transformation involves cellular metabolic changes, which may in turn render the transformed cells susceptible to specific assaults in a selective manner, we searched for such vulnerabilities in CML LSCs. We performed metabolic analyses on both stem cell-enriched (CD34+ and CD34+CD38-) and differentiated (CD34-) cells derived from individuals with CML, and we compared the signature of these cells with that of their normal counterparts. Through combination of stable isotope-assisted metabolomics with functional assays, we demonstrate that primitive CML cells rely on upregulated oxidative metabolism for their survival. We also show that combination treatment with imatinib and tigecycline, an antibiotic that inhibits mitochondrial protein translation, selectively eradicates CML LSCs both in vitro and in a xenotransplantation model of human CML. Our findings provide a strong rationale for investigation of the use of TKIs in combination with tigecycline to treat patients with CML with minimal residual disease.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Neoplasm/drug effects , Imatinib Mesylate/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Minocycline/analogs & derivatives , Mitochondria/drug effects , Neoplastic Stem Cells/drug effects , Oxidative Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Animals , Blotting, Western , Cell Survival/drug effects , Chromatography, Liquid , Drug Therapy, Combination , Female , Humans , Hypoglycemic Agents/pharmacology , Imatinib Mesylate/therapeutic use , In Vitro Techniques , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Mass Spectrometry , Metabolomics , Mice , Mice, Inbred NOD , Minocycline/pharmacology , Mitochondria/metabolism , Neoplastic Stem Cells/metabolism , Phenformin/pharmacology , Protein Kinase Inhibitors/therapeutic use , Reverse Transcriptase Polymerase Chain Reaction , Tigecycline , Tumor Cells, Cultured , Tumor Stem Cell Assay , Up-Regulation , Xenograft Model Antitumor Assays
4.
Autophagy ; 12(6): 936-48, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27168493

ABSTRACT

A major drawback of tyrosine kinase inhibitor (TKI) treatment in chronic myeloid leukemia (CML) is that primitive CML cells are able to survive TKI-mediated BCR-ABL inhibition, leading to disease persistence in patients. Investigation of strategies aiming to inhibit alternative survival pathways in CML is therefore critical. We have previously shown that a nonspecific pharmacological inhibition of autophagy potentiates TKI-induced death in Philadelphia chromosome-positive cells. Here we provide further understanding of how specific and pharmacological autophagy inhibition affects nonmitochondrial and mitochondrial energy metabolism and reactive oxygen species (ROS)-mediated differentiation of CML cells and highlight ATG7 (a critical component of the LC3 conjugation system) as a potential specific therapeutic target. By combining extra- and intracellular steady state metabolite measurements by liquid chromatography-mass spectrometry with metabolic flux assays using labeled glucose and functional assays, we demonstrate that knockdown of ATG7 results in decreased glycolysis and increased flux of labeled carbons through the mitochondrial tricarboxylic acid cycle. This leads to increased oxidative phosphorylation and mitochondrial ROS accumulation. Furthermore, following ROS accumulation, CML cells, including primary CML CD34(+) progenitor cells, differentiate toward the erythroid lineage. Finally, ATG7 knockdown sensitizes CML progenitor cells to TKI-induced death, without affecting survival of normal cells, suggesting that specific inhibitors of ATG7 in combination with TKI would provide a novel therapeutic approach for CML patients exhibiting persistent disease.


Subject(s)
Autophagy-Related Protein 7/metabolism , Cell Differentiation , Energy Metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Philadelphia Chromosome , Animals , Antigens, CD34/metabolism , Autophagy/drug effects , Cell Differentiation/drug effects , Cell Respiration/drug effects , Cell Survival/drug effects , Citric Acid Cycle/drug effects , Disease Models, Animal , Energy Metabolism/drug effects , Gene Deletion , Gene Knockdown Techniques , Glycolysis/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , K562 Cells , Metabolic Flux Analysis , Metabolome/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Protein Kinase Inhibitors/pharmacology , Reactive Oxygen Species/metabolism , Stem Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL