Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Bio Mater ; 7(6): 3821-3827, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38787698

ABSTRACT

Near-infrared fluorescence (NIRF) thermometry is an emerging method for the noncontact measurement of in vivo deep temperatures. Fluorescence-lifetime-based methods are effective because they are unaffected by optical loss due to excitation or detection paths. Moreover, the physiological changes in body temperature in deep tissues and their pharmacological effects are yet to be fully explored. In this study, we investigated the potential application of the NIRF lifetime-based method for temperature measurement of in vivo deep tissues in the abdomen using rare-earth-based particle materials. ß-NaYF4 particles codoped with Nd3+ and Yb3+ (excitation: 808 nm, emission: 980 nm) were used as NIRF thermometers, and their fluorescence decay curves were exponential. Slope linearity analysis (SLA), a screening method, was proposed to extract pixels with valid data. This method involves performing a linearity evaluation of the semilogarithmic plot of the decay curve collected at three delay times after cutting off the pulsed laser irradiation. After intragastric administration of the thermometer, the stomach temperature was monitored by using an NIRF time-gated imaging setup. Concurrently, a heater was attached to the lower abdomens of the mice under anesthesia. A decrease in the stomach temperature under anesthesia and its recovery via the heater indicated changes in the fluorescence lifetime of the thermometer placed inside the body. Thus, NaYF4:Nd3+/Yb3+ functions as a fluorescence thermometer that can measure in vivo temperature based on the temperature dependence of the fluorescence lifetime at 980 nm under 808 nm excitation. This study demonstrated the ability of a rare-earth-based NIRF thermometer to measure deep tissues in live mice, with the proposed SLA method for excluding the noisy deviations from the analysis for measuring temperature using the NIRF lifetime of a rare-earth-based thermometer.


Subject(s)
Fluorides , Optical Imaging , Ytterbium , Yttrium , Animals , Mice , Yttrium/chemistry , Ytterbium/chemistry , Fluorides/chemistry , Neodymium/chemistry , Biocompatible Materials/chemistry , Materials Testing , Particle Size , Temperature , Thermometry/methods , Infrared Rays
2.
Anal Sci ; 40(7): 1323-1330, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38619813

ABSTRACT

Luminescence thermometry is a non-contact method that can measure surface temperatures and the temperature of the area where the fluorescent probe is located, allowing temperature distribution visualizations with a camera. Ratiometric fluorescence thermometry, which uses the intensity ratio of fluorescence peaks at two wavelengths with different fluorescence intensity dependencies, is an excellent method for visualizing temperature distributions independent of the fluorophore spatial concentration, excitation light intensity and absolute fluorescence intensity. Herein, Nd3+/Yb3+/Er3+-doped Y2O3 nanomaterials with a diameter of 200 nm were prepared as phosphors for temperature distribution measurement of fluids at different temperatures. The advantages of this designed fluorescent material include non-aggregation in water and the fact that its near-infrared (NIR) fluorescence excitation (808 nm) is not absorbed by water, thereby minimizing sample heating upon irradiation. Under optical excitation at 808 nm, the ratio of the fluorescence intensities of Yb3+ (IYb; 975 nm) and Er3+ (IEr; 1550 nm), which exhibited different temperature responses, indicated the temperature distribution inside the fluid device. Thus, this technique using Nd3+/Yb3+/Er3+-doped Y2O3 is expected to be applied for temperature distribution mapping analysis inside fluidic devices as a ratiometric NIR fluorescence thermometer, which is unaffected by laser-induced heating.

3.
Appl Opt ; 61(2): 638-644, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35200907

ABSTRACT

The refraction of fluorescence from the inside of a sample at the surface results in fluctuations in fluorescence computed tomography (CT). We evaluated the influence of the difference in refractive index (RI) between the sample body and the surroundings on fluorescence CT results. The brightest fluorescent point is away from the correct point on the tomograms owing to the refraction. The speculated position is determined as the exact point if the RI ratio ranges between 0.97 and 1.03 by immersing the body in an RI matching liquid. The results can help in experimental settings of fluorescence CT for acquiring three-dimensional positional information.


Subject(s)
Refractometry , Tomography , Refraction, Ocular , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...