Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Anim Sci ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943561

ABSTRACT

The objective of the present study was to comprehensively evaluate whether body measurement traits, including BW and body size, could be used as indicators of genetic selection for feed efficiency and carcass traits in Japanese Black steers. First, we estimated the genetic parameters for body measurements, feed efficiency, and carcass traits. Second, we estimated the correlated responses in feed efficiency and carcass traits when selection was applied to one or multiple body measurement traits. In total, 4,578 Japanese Black steers with phenotypic values of residual feed intake (RFI) and residual BW gain (RG) as feed efficiency traits and carcass weight (CWT) and beef marbling standard (BMS) as carcass traits were used. Eleven body measurement traits were measured at the start and finish of the fattening periods (BMT1 and BMT2, respectively), and their growth during the fattening period (BMT3) was used for genetic analyses. The results of genetic parameters showed that the heritability estimates were low to moderate (0.10-0.66), and the genetic correlations among body measurement traits were also estimated to be positively moderate to high in each measuring point (0.23-0.99). The genetic correlations of body measurement traits with RFI and BMS were estimated to be low (-0.14-0.30 and -0.17-0.35, respectively), but those with CWT were positively low to high (0.12-0.97). The genetic correlation estimates between BMT3 and RG were moderate to high (0.38-0.78). Second, correlated responses were estimated under positive selection for body measurement traits. Positive selection for BMT2 and BMT3 increased CWT and RG; however, positive selection for body measurement traits resulted in no change in RFI and BMS. Favorable directions of genetic gains, which were positive for RG, CWT, and BMS and negative for RFI, were obtained by selection indices, including multiple traits in BMT1. Our results suggest that using only one body measurement trait as an indicator of genetic selection for RFI is difficult. However, body measurement traits can be indirect indicators of improved RG. Our results also suggest that genetic improvement of both RFI and RG without reducing CWT and BMS could be achieved using selection indices that account for a balance of body conformation using multiple body measurement traits in Japanese Black cattle.

2.
Anim Biosci ; 37(5): 839-851, 2024 May.
Article in English | MEDLINE | ID: mdl-38271985

ABSTRACT

OBJECTIVE: The main goal of our current study was to improve the growth curve of meat animals by decreasing the birth weight while achieving a finishing weight that is the same as that before selection but at younger age. METHODS: Random regression model was developed to derive various selection indices to achieve desired gains in body weight at target time points throughout the fattening process. We considered absolute and proportional gains at specific ages (in weeks) and for various stages (i.e., early, middle, late) during the fattening process. RESULTS: The point gain index was particularly easy to use because breeders can assign a specific age (in weeks) as a time point and model either the actual weight gain desired or a scaled percentage gain in body weight. CONCLUSION: The point gain index we developed can achieve the desired weight gain at any given postnatal week of the growing process and is an easy-to-use and practical option for improving the growth curve.

3.
J Anim Sci ; 100(9)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35860946

ABSTRACT

The low heritability and moderate repeatability of semen production traits in beef and dairy bulls suggest that nonadditive genetic effects, such as dominance and epistatic effects, play an important role in semen production and should therefore be considered in genetic improvement programs. In this study, the repeatability of semen production traits in Japanese Black bulls (JB) as beef bulls and Holstein bulls (HOL) as dairy bulls was evaluated by considering additive and nonadditive genetic effects using the Illumina BovineSNP50 BeadChip. We also evaluated the advantage of using more complete models that include nonadditive genetic effects by comparing the rank of genotyped animals and the phenotype prediction ability of each model. In total, 65,463 records for 615 genotyped JB and 48,653 records for 845 genotyped HOL were used to estimate additive and nonadditive (dominance and epistatic) variance components for semen volume (VOL), sperm concentration (CON), sperm motility (MOT), MOT after freeze-thawing (aMOT), and sperm number (NUM). In the model including both additive and nonadditive genetic effects, the broad-sense heritability (0.17 to 0.43) was more than twice as high as the narrow-sense heritability (0.04 to 0.11) for all traits and breeds, and the differences between the broad-sense heritability and repeatability were very small for VOL, NUM, and CON in both breeds. A large proportion of permanent environmental variance was explained by epistatic variance. The epistatic variance as a proportion of total phenotypic variance was 0.07 to 0.33 for all traits and breeds. In addition, heterozygosity showed significant positive relationships with NUM, MOT, and aMOT in JB and NUM in HOL, when the heterozygosity rate was included as a covariate. In a comparison of models, the inclusion of nonadditive genetic effects resulted in a re-ranking of the top genotyped bulls for the additive effects. Adjusting for nonadditive genetic effects could be expected to produce a more accurate breeding value, even if the models have similar fitting. However, including nonadditive genetic effects did not improve the ability of any model to predict phenotypic values for any trait or breed compared with the predictive ability of a model that includes only additive effects. Consequently, although nonadditive genetic effects, especially epistatic effects, play an important role in semen production traits, they do not improve prediction accuracy in beef and dairy bulls.


Improving reproductive efficiency is a key objective in the beef and dairy cattle industries, and bull fertility is an important determinant of the reproductive performance of cows. The heritability of semen production traits is generally low; however, their repeatability is moderate. This difference between repeatability and heritability suggests that nonadditive genetic effects, such as dominance and epistatic genetic effects, could have an important role in semen production traits in bulls. Here, we estimated repeatability for semen production traits in beef and dairy bulls by considering additive and nonadditive genetic effects. Our results suggest that the contribution of nonadditive genetic effects to differences between repeatability and heritability was very high. Nonadditive genetic effects, especially epistatic effects, played important roles in semen production traits in beef and dairy bulls. However, we found that the inclusion of nonadditive genetic effects in a predictive model does not improve phenotypic prediction accuracy; further studies are needed to improve the predictive ability when using nonadditive genetic effects.


Subject(s)
Semen , Sperm Motility , Animals , Cattle/genetics , Genome , Genomics , Male , Phenotype
4.
Anim Biosci ; 35(6): 804-813, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34991226

ABSTRACT

OBJECTIVE: A formula is needed that is practical for current livestock breeding methods and that predicts the approximate rate of inbreeding (∆F) in populations where selection is performed according to four-path programs (sires to breed sons, sires to breed daughters, dams to breed sons, and dams to breed daughters). The formula widely used to predict inbreeding neglects selection, we need to develop a new formula that can be applied with or without selection. METHODS: The core of the prediction is to incorporate the long-tern genetic influence of the selected parents in four-selection paths executed as sires to breed sons, sires to breed daughters, dams to breed sons, and dams to breed daughters. The rate of inbreeding was computed as the magnitude that is proportional to the sum of squared long-term genetic contributions of the parents of four-selection paths to the selected offspring. RESULTS: We developed a formula to predict the rate of inbreeding in populations undergoing four-path selection on genomically enhanced breeding values and with discrete generations. The new formula can be applied with or without selection. Neglecting the effects of selection led to underestimation of the rate of inbreeding by 40% to 45%. CONCLUSION: The formula we developed here would be highly useful as a practical method for predicting the approximate rate of inbreeding (ΔF) in populations where selection is performed according to four-path programs.

5.
BMC Genomics ; 22(1): 512, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34233617

ABSTRACT

BACKGROUND: Genomic prediction is now an essential technology for genetic improvement in animal and plant breeding. Whereas emphasis has been placed on predicting the breeding values, the prediction of non-additive genetic effects has also been of interest. In this study, we assessed the potential of genomic prediction using non-additive effects for phenotypic prediction in Japanese Black, a beef cattle breed. In addition, we examined the stability of variance component and genetic effect estimates against population size by subsampling with different sample sizes. RESULTS: Records of six carcass traits, namely, carcass weight, rib eye area, rib thickness, subcutaneous fat thickness, yield rate and beef marbling score, for 9850 animals were used for analyses. As the non-additive genetic effects, dominance, additive-by-additive, additive-by-dominance and dominance-by-dominance effects were considered. The covariance structures of these genetic effects were defined using genome-wide SNPs. Using single-trait animal models with different combinations of genetic effects, it was found that 12.6-19.5 % of phenotypic variance were occupied by the additive-by-additive variance, whereas little dominance variance was observed. In cross-validation, adding the additive-by-additive effects had little influence on predictive accuracy and bias. Subsampling analyses showed that estimation of the additive-by-additive effects was highly variable when phenotypes were not available. On the other hand, the estimates of the additive-by-additive variance components were less affected by reduction of the population size. CONCLUSIONS: The six carcass traits of Japanese Black cattle showed moderate or relatively high levels of additive-by-additive variance components, although incorporating the additive-by-additive effects did not improve the predictive accuracy. Subsampling analysis suggested that estimation of the additive-by-additive effects was highly reliant on the phenotypic values of the animals to be estimated, as supported by low off-diagonal values of the relationship matrix. On the other hand, estimates of the additive-by-additive variance components were relatively stable against reduction of the population size compared with the estimates of the corresponding genetic effects.


Subject(s)
Genome , Models, Genetic , Animals , Cattle/genetics , Genomics , Phenotype , Polymorphism, Single Nucleotide , Population Density
6.
Sci Rep ; 11(1): 6687, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33758295

ABSTRACT

Intensive use of a few elite sires has increased the risk of the manifestation of deleterious recessive traits in cattle. Substantial genotyping data gathered using single-nucleotide polymorphism (SNP) arrays have identified the haplotypes with homozygous deficiency, which may compromise survival. We developed Japanese Black cattle haplotypes (JBHs) using SNP array data (4843 individuals) and identified deleterious recessive haplotypes using exome sequencing of 517 sires. We identified seven JBHs with homozygous deficiency. JBH_10 and JBH_17 were associated with the resuming of estrus after artificial insemination, indicating that these haplotypes carried deleterious mutations affecting embryonic survival. The exome data of 517 Japanese Black sires revealed that AC_000165.1:g.85341291C>G of IARS in JBH_8_2, AC_000174.1:g.74743512G>T of CDC45 in JBH_17, and a copy variation region (CNVR_27) of CLDN16 in JBH_1_1 and JBH_1_2 were the candidate mutations. A novel variant AC_000174.1:g.74743512G>T of CDC45 in JBH_17 was located in a splicing donor site at a distance of 5 bp, affecting pre-mRNA splicing. Mating between heterozygotes of JBH_17 indicated that homozygotes carrying the risk allele died around the blastocyst stage. Analysis of frequency of the CDC45 risk allele revealed that its carriers were widespread throughout the tested Japanese Black cattle population. Our approach can effectively manage the inheritance of recessive risk alleles in a breeding population.


Subject(s)
Alleles , Genes, Recessive , Haplotypes , Mutation , Animals , Biomarkers , Breeding , Cattle , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA Copy Number Variations , Embryonic Development , Homozygote , Polymorphism, Single Nucleotide , RNA Splicing , Exome Sequencing
7.
Anim Sci J ; 91(1): e13383, 2020.
Article in English | MEDLINE | ID: mdl-32410280

ABSTRACT

The objectives of this study were to estimate genetic parameters and to perform a genome-wide association study (GWAS) for predicted methane-related traits in Japanese Black steers. The methane production and yield traits were predicted using on-farm measurable traits, such as dry matter intake and average daily gain. A total of 4,578 Japanese Black steers, which were progenies of 362 sires genotyped with imputed 551,995 single nucleotide polymorphisms (SNPs), had phenotypes of predicted methane-related traits during the total fattening period (52 weeks). For the estimation of genetic parameters, the estimated heritabilities were moderate (ranged from 0.57 to 0.60). In addition, the estimated genetic correlations of methane production traits with most of carcass traits and feed-efficiency traits were unfavorable, but those of methane yield traits were favorable or low. For the GWAS, no genome-wide significant SNP was detected, but a total of four quantitative trait locus (QTL) regions that explained more than 5.0% of genetic variance were localized on the genome, and some candidate genes associated with growth and feed-efficiency traits were located on the regions. Our results suggest that the predicted methane-related traits are heritable and some QTL regions for the traits are localized on the genome in Japanese Black steers.


Subject(s)
Animal Nutritional Physiological Phenomena/genetics , Cattle/genetics , Cattle/metabolism , Diet/veterinary , Genome-Wide Association Study/veterinary , Genome/genetics , Methane/metabolism , Quantitative Trait, Heritable , Animals , Male , Phenotype , Polymorphism, Single Nucleotide
8.
Anim Sci J ; 91(1): e13316, 2020.
Article in English | MEDLINE | ID: mdl-31769129

ABSTRACT

The objectives of this study were to better understand the genetic architecture and the possibility of genomic evaluation for feed efficiency traits by (i) performing genome-wide association studies (GWAS), and (ii) assessing the accuracy of genomic evaluation for feed efficiency traits, using single-step genomic best linear unbiased prediction (ssGBLUP)-based methods. The analyses were performed in residual feed intake (RFI), residual body weight gain (RG), and residual intake and body weight gain (RIG) during three different fattening periods. The phenotypes from 4,578 Japanese Black steers, which were progenies of 362 progeny-tested bulls and the genotypes from the bulls were used in this study. The results of GWAS showed that a total of 16, 8, and 12 gene ontology terms were related to RFI, RG, and RIG, respectively, and the candidate genes identified in RFI and RG were involved in olfactory transduction and the phosphatidylinositol signaling system, respectively. The realized reliabilities of genomic estimated breeding values were low to moderate in the feed efficiency traits. In conclusion, ssGBLUP-based method can lead to understand some biological functions related to feed efficiency traits, even with small population with genotypes, however, an alternative strategy will be needed to enhance the reliability of genomic evaluation.


Subject(s)
Animal Nutritional Physiological Phenomena/genetics , Cattle/genetics , Eating/genetics , Eating/physiology , Genetic Testing/methods , Genetic Testing/veterinary , Genome-Wide Association Study , Genome , Quantitative Trait, Heritable , Animal Feed , Animals , Phosphatidylinositols/metabolism , Signal Transduction/genetics , Signal Transduction/physiology , Smell/genetics , Smell/physiology , Weight Gain/genetics
9.
Genet Sel Evol ; 51(1): 19, 2019 May 02.
Article in English | MEDLINE | ID: mdl-31046678

ABSTRACT

BACKGROUND: Growth curves have been widely used in genetic analyses to gain insights into the growth characteristics of both animals and plants. However, several questions remain unanswered, including how the initial phenotypes affect growth and what is the duration of any such impact. For beef cattle production in Japan, calves are procured from farms that specialize in reproduction and then moved to other farms where they are fattened to achieve their market/purchase value. However, the causal effect of growth, while calves are on the reproductive farms, on their growth during fattening remains unclear. To investigate this, we developed a model that combines a structural equation with a growth curve model. The causal effect was modeled with B-splines, which allows inference of the effect as a curve. We fitted the proposed structural growth curve model to repeated measures of body weight from a Japanese beef cattle population (n = 3831) to estimate the curve of the causal effect of the calves' initial weight on their trajectory of growth when they are on fattening farms. RESULTS: Maternal and reproduction farm effects explained 26% of the phenotypic variance of initial weight at fattening farms. The structural growth curve model was fitted to remove the effects of these factors in growth curve analysis at fattening farms. The estimated curve of causal effects remained at approximately 0.8 for 200 d after the calves entered the fattening farms, which means that 64% of the phenotypic variance was explained by the initial weight. Then, the effect decreased linearly and disappeared approximately 620 d after entering the fattening farms, which corresponded to an average age of 871.5 d. CONCLUSIONS: The proposed model is expected to provide more accurate estimates of genetic values for growth patterns because the confounding causal factors such as maternal and reproduction farm effects are removed. Moreover, examination of the inferred curve of the causal effect enabled us to estimate the effect of a calf's initial weight at arbitrary times during growth, which could provide suitable information for decision-making when shifting the time of slaughter, building models for genetic evaluation, and selecting calves for market.


Subject(s)
Cattle/growth & development , Growth Charts , Animal Husbandry/methods , Animals , Body Weight , Cattle Diseases , Computer Simulation , Japan , Phenotype , Reproduction
10.
Asian-Australas J Anim Sci ; 32(2): 183-191, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30056666

ABSTRACT

OBJECTIVE: The purpose of this study was to compare intended and actual yearly genetic gains for milk production and conformation traits and to investigate the simple selection criterion practiced among milk production and conformation traits during the last two decades in Japan. Learning how to utilize the information on intended and actual genetic gains during the last two decades into the genomic era is vital. METHODS: Genetic superiority for each trait for four paths of selection (sires to breed bulls [SB], sires to breed cows [SC], dams to breed bulls [DB], and dams to breed cows [DC]) was estimated. Actual practiced simple selection criteria were investigated among milk production and conformation traits and relative emphasis on milk production and conformation traits was compared. RESULTS: Selection differentials in milk production traits were greater than those of conformation traits in all four paths of selection. Realized yearly genetic gain was less than that intended for milk production traits. Actual annual genetic gain for conformation traits was equivalent to or greater than intended. Retrospective selection weights of milk production and conformation traits were 0.73:0.27 and 0.56:0.44 for intended and realized genetic gains, respectively. CONCLUSION: Selection was aimed more toward increasing genetic gain in milk production than toward conformation traits over the past two decades in Japan. In contrast, actual annual genetic gain for conformation traits was equivalent to or greater than intended. Balanced selection between milk production and conformation traits tended to be favored during actual selection. Each of four paths of selection (SB, SC, DB, and DC) has played an individual and important role. With shortening generation interval in the genomic era, a young sire arises before the completion of sire's daughters' milk production records. How to integrate these four paths of selection in the genomic era is vital.

11.
Asian-Australas J Anim Sci ; 32(2): 159-169, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30056675

ABSTRACT

OBJECTIVE: Models for genomic selection assume that the reference population is an unselected population. However, in practice, genotyped individuals, such as progeny-tested bulls, are highly selected, and the reference population is created after preselection. In dairy cattle, the intensity of selection is higher in males than in females, suggesting that cows can be added to the reference population with less bias and loss of accuracy. The objective is to develop formulas applied to any genomic prediction studies or practice with preselected animals as reference population. METHODS: We developed formulas for calculating the reliability and bias of genomically enhanced breeding values (GEBV) in the reference population where individuals are preselected on estimated breeding values. Based on the formulas presented, deterministic simulation was conducted by varying heritability, preselection percentage, and the reference population size. RESULTS: The number of bulls equal to a cow regarding the reliability of GEBV was expressed through a simple formula for the reference population consisting of preselected animals. The bull population was vastly superior to the cow population regarding the reliability of GEBV for low-heritability traits. However, the superiority of reliability from the bull reference population over the cow population decreased as heritability increased. Bias was greater for bulls than cows. Bias and reduction in reliability of GEBV due to preselection was alleviated by expanding reference population. CONCLUSION: Cows are easier in expanding reference population size compared with bulls and alleviate bias and reduction in reliability of GEBV of bulls which are highly preselected than cows by expanding the cow reference population.

12.
J Anim Sci ; 96(3): 797-805, 2018 Apr 03.
Article in English | MEDLINE | ID: mdl-29584931

ABSTRACT

We evaluated the genetic relationships (1) among feed efficiency traits with different fattening periods, (2) between feed efficiency traits and growth traits, and (3) between feed efficiency traits and carcass traits, to determine the influence of genetic factors on feed efficiency traits. In total, 4,578 Japanese Black cattle from a progeny testing program were used. Residual feed intake (RFI), residual BW gain (RG), and residual intake and BW gain (RIG) were defined as feed efficiency traits, and were measured for the first half (approximately 9 to 15 months of age), latter half (approximately 15 to 21 months of age), and total period of fattening (approximately 9 to 21 months of age). A single-trait animal model for estimating heritability and a two-trait animal model for estimating genetic and phenotypic correlations were used. The heritability estimates for RFI, RG, and RIG were different in each fattening period, ranging from 0.36 to 0.46, 0.19 to 0.28, and 0.28 to 0.34, respectively, and the heritability estimates for the total fattening period were greater than those for the first and latter halves separately. RIG showed the greatest preferred genetic correlation, with a greater feed conversion ratio than the other feed efficiency traits (ranging from -0.84 to -0.96). RG in the first and latter halves of the fattening period had different genetic correlations with the growth starting point (0.82 and -0.06, respectively) and maturity rate (0.49 and -0.51, respectively) of the Gompertz growth curve parameters, and is strongly dependent on the different fattening periods. Feed efficiency traits in different fattening periods had low genetic correlations with the carcass traits (from -0.05 to 0.19 for RFI; from 0.02 to 0.31 for RG; and from -0.11 to 0.20 for RIG). This study indicated the possibility for genetic improvement through the selection of high-RIG animals to decrease feed intake and increase BW gain without any unfavorable correlated responses affecting mature (asymptotic) weight and carcass grade.


Subject(s)
Animal Feed/analysis , Body Weight/genetics , Cattle/genetics , Eating/genetics , Energy Intake/genetics , Energy Metabolism/genetics , Animals , Cattle/growth & development , Cattle/physiology , Male , Phenotype
13.
Asian-Australas J Anim Sci ; 31(1): 19-25, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28728392

ABSTRACT

OBJECTIVE: In practical breeding, selection is often performed by ignoring the accuracy of evaluations and applying economic weights directly to the selection index coefficients of genetically standardized traits. The denominator of the standardized component trait of estimated genetic evaluations in practical selection varies with its reliability. Whereas theoretical methods for calculating the selection index coefficients of genetically standardized traits account for this variation, practical selection ignores reliability and assumes that it is equal to unity for each trait. The purpose of this study was to clarify the effects of ignoring the accuracy of the standardized component trait in selection criteria on selection responses and economic weights in retrospect. METHODS: Theoretical methods were presented accounting for reliability of estimated genetic evaluations for the selection index composed of genetically standardized traits. RESULTS: Selection responses and economic weights in retrospect resulting from practical selection were greater than those resulting from theoretical selection accounting for reliability when the accuracy of the estimated breeding value (EBV) or genomically enhanced breeding value (GEBV) was lower than those of the other traits in the index, but the opposite occurred when the accuracy of the EBV or GEBV was greater than those of the other traits. This trend was more conspicuous for traits with low economic weights than for those with high weights. CONCLUSION: Failure of the practical index to account for reliability yielded economic weights in retrospect that differed from those obtained with the theoretical index. Our results indicated that practical indices that ignore reliability delay genetic improvement. Therefore, selection practices need to account for reliability, especially when the reliabilities of the traits included in the index vary widely.

14.
J Cell Sci ; 119(Pt 17): 3602-12, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16912075

ABSTRACT

Various mutations in the AE1 (anion exchanger 1, band 3) gene cause dominant hereditary spherocytosis, a common congenital hemolytic anemia associated with deficiencies of AE1 of different degrees and loss of mutant protein from red blood cell membranes. To determine the mechanisms underlying decreases in AE1 protein levels, we employed K562 and HEK293 cell lines and Xenopus oocytes together with bovine wild-type AE1 and an R664X nonsense mutant responsible for dominant hereditary spherocytosis to analyze protein expression, turnover, and intracellular localization. R664X-mutant protein underwent rapid degradation and caused specifically increased turnover and impaired trafficking to the plasma membrane of the wild-type protein through hetero-oligomer formation in K562 cells. Consistent with those observations, co-expression of mutant and wild-type AE1 reduced anion transport by the wild-type protein in oocytes. Transfection studies in K562 and HEK293 cells revealed that the major pathway mediating degradation of both R664X and wild-type AE1 employed endoplasmic reticulum (ER)-associated degradation through the proteasomal pathway. Proteasomal degradation of R664X protein appeared to be independent of both ubiquitylation and N-glycosylation, and aggresome formation was not observed following proteasome inhibition. These findings indicate that AE1 R664X protein, which is associated with dominant hereditary spherocytosis, has a dominant-negative effect on the expression of wild-type AE1.


Subject(s)
Anion Exchange Protein 1, Erythrocyte/metabolism , Endoplasmic Reticulum/metabolism , Spherocytosis, Hereditary/metabolism , Ubiquitins/metabolism , Animals , Anion Exchange Protein 1, Erythrocyte/genetics , Cattle , Cell Line , Cell Membrane/metabolism , Genes, Dominant , Humans , Mutation , Proteasome Endopeptidase Complex/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Spherocytosis, Hereditary/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...