Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Opin Chem Biol ; 82: 102510, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39128325

ABSTRACT

Mushroom-forming fungi exhibit a distinctive ecology, which is unsurprisingly also reflected in unique and divergent biosynthetic pathways. We review this phenomenon through the lens of the polyketide metabolism, where mushrooms often deviate from established principles and challenge conventional paradigms. This is evident not only by non-canonical enzyme architectures and functions but also by their propensity for multi-product synthases rather than single-product pathways. Nevertheless, mushrooms also feature many polyketides familiar from plants, bacteria, and fungi of their sister division Ascomycota, which, however, are the result of an independent evolution. In this regard, the captivating biosynthetic pathways of mushrooms might even help us understand the biological pressures that led to the simultaneous production of the same natural products (via convergent evolution, co-evolution, and/or metaevolution) and thus address the question of their raison d'être.


Subject(s)
Agaricales , Polyketide Synthases , Polyketide Synthases/metabolism , Polyketide Synthases/genetics , Agaricales/enzymology , Agaricales/metabolism , Polyketides/metabolism , Polyketides/chemistry , Biosynthetic Pathways , Biological Products/metabolism , Biological Products/chemistry
2.
Angew Chem Int Ed Engl ; 63(42): e202407425, 2024 Oct 14.
Article in English | MEDLINE | ID: mdl-38963262

ABSTRACT

Bioactive dimeric (pre-)anthraquinones are ubiquitous in nature and are found in bacteria, fungi, insects, and plants. Their biosynthesis via oxidative phenol coupling (OPC) is catalyzed by cytochrome P450 enzymes, peroxidases, or laccases. While the biocatalysis of OPC in molds (Ascomycota) is well-known, the respective enzymes in mushroom-forming fungi (Basidiomycota) are unknown. Here, we report on the biosynthesis of the atropisomers phlegmacin A1 and B1 of the mushroom Cortinarius odorifer. The biosynthesis of these unsymmetrically 7,10'-homo-coupled dihydroanthracenones was heterologously reconstituted in the mold Aspergillus niger. Methylation of the parental monomer atrochrysone to its 6-O-methyl ether torosachrysone by the O-methyltransferase CoOMT1 precedes the regioselective homocoupling to phlegmacin, catalyzed by the enzyme CoUPO1 annotated as an "unspecific peroxygenase" (UPO). Our results reveal an unprecedented UPO reaction, thereby expanding the biocatalytic portfolio of oxidative phenol coupling beyond the commonly reported enzymes. The results show that Basidiomycota use peroxygenases to selectively couple aryls independently of and convergently to any other group of organisms, emphasizing the central role of OPC in natural processes.


Subject(s)
Agaricales , Mixed Function Oxygenases , Oxidation-Reduction , Mixed Function Oxygenases/metabolism , Mixed Function Oxygenases/chemistry , Agaricales/enzymology , Stereoisomerism , Phenols/metabolism , Phenols/chemistry , Phenol/chemistry , Phenol/metabolism
3.
Fungal Biol Biotechnol ; 10(1): 17, 2023 Aug 04.
Article in English | MEDLINE | ID: mdl-37542286

ABSTRACT

BACKGROUND: Non-reducing polyketide synthases (NR-PKSs) account for a major share of natural product diversity produced by both Asco- and Basidiomycota. The present evolutionary diversification into eleven clades further underscores the relevance of these multi-domain enzymes. Following current knowledge, NR-PKSs initiate polyketide assembly by an N-terminal starter unit:acyl transferase (SAT) domain that catalyzes the transfer of an acetyl starter from the acetyl-CoA thioester onto the acyl carrier protein (ACP). RESULTS: A comprehensive phylogenetic analysis of NR-PKSs established a twelfth clade from which three representatives, enzymes CrPKS1-3 of the webcap mushroom Cortinarius rufoolivaceus, were biochemically characterized. These basidiomycete synthases lack a SAT domain yet are fully functional hepta- and octaketide synthases in vivo. Three members of the other clade of basidiomycete NR-PKSs (clade VIII) were produced as SAT-domainless versions and analyzed in vivo and in vitro. They retained full activity, thus corroborating the notion that the SAT domain is dispensable for many basidiomycete NR-PKSs. For comparison, the ascomycete octaketide synthase atrochrysone carboxylic acid synthase (ACAS) was produced as a SAT-domainless enzyme as well, but turned out completely inactive. However, a literature survey revealed that some NR-PKSs of ascomycetes carry mutations within the catalytic motif of the SAT domain. In these cases, the role of the domain and the origin of the formal acetate unit remains open. CONCLUSIONS: The role of SAT domains differs between asco- and basidiomycete NR-PKSs. For the latter, it is not part of the minimal set of NR-PKS domains and not required for function. This knowledge may help engineer compact NR-PKSs for more resource-efficient routes. From the genomic standpoint, seemingly incomplete or corrupted genes encoding SAT-domainless NR-PKSs should not automatically be dismissed as non-functional pseudogenes, but considered during genome analysis to decipher the potential arsenal of natural products of a given fungus.

4.
Chembiochem ; 24(3): e202200649, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36507600

ABSTRACT

The nonreducing iterative type I polyketide synthases (NR-PKSs) CoPKS1 and CoPKS4 of the webcap mushroom Cortinarius odorifer share 88 % identical amino acids. CoPKS1 almost exclusively produces a tricyclic octaketide product, atrochrysone carboxylic acid, whereas CoPKS4 shows simultaneous hepta- and octaketide synthase activity and also produces the bicyclic heptaketide 6-hydroxymusizin. To identify the region(s) controlling chain length, four chimeric enzyme variants were constructed and assayed for activity in Aspergillus niger as heterologous expression platform. We provide evidence that the ß-ketoacyl synthase (KS) domain determines chain length in these mushroom NR-PKSs, even though their KS domains differ in only ten amino acids. A unique proline-rich linker connecting the acyl carrier protein with the thioesterase domain varies most between these two enzymes but is not involved in chain length control.


Subject(s)
Agaricales , Polyketide Synthases , Polyketide Synthases/metabolism , Agaricales/metabolism , Amino Acids
5.
Angew Chem Int Ed Engl ; 61(24): e202116142, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35218274

ABSTRACT

(Pre-)anthraquinones are widely distributed natural compounds and occur in plants, fungi, microorganisms, and animals, with atrochrysone (1) as the key biosynthetic precursor. Chemical analyses established mushrooms of the genus Cortinarius-the webcaps-as producers of atrochrysone-derived octaketide pigments. However, more recent genomic data did not provide any evidence for known atrochrysone carboxylic acid (4) synthases nor any other polyketide synthase (PKS) producing oligocyclic metabolites. Here, we describe an unprecedented class of non-reducing (NR-)PKS. In vitro assays with recombinant enzyme in combination with in vivo product formation in the heterologous host Aspergillus niger established CoPKS1 and CoPKS4 of C. odorifer as members of a new class of atrochrysone carboxylic acid synthases. CoPKS4 catalyzed both hepta- and octaketide synthesis and yielded 6-hydroxymusizin (6), along with 4. These first mushroom PKSs for oligocyclic products illustrate how the biosynthesis of bioactive natural metabolites evolved independently in various groups of life.


Subject(s)
Agaricales , Polyketides , Agaricales/metabolism , Anthraquinones/chemistry , Polyketide Synthases/metabolism , Polyketides/metabolism
6.
Nat Prod Rep ; 38(4): 702-722, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33404035

ABSTRACT

Covering: up to September 2020 Mushroom-forming fungi of the division Basidiomycota have traditionally been recognised as prolific producers of structurally diverse and often bioactive secondary metabolites, using the methods of chemistry for research. Over the past decade, -omics technologies were applied on these fungi, and sophisticated heterologous gene expression platforms emerged, which have boosted research into the genetic and biochemical basis of the biosyntheses. This review provides an overview on experimentally confirmed natural product biosyntheses of basidiomycete polyketides, amino acid-derived products, terpenoids, and volatiles. We also present challenges and solutions particular to natural product research with these fungi. 222 references are cited.


Subject(s)
Basidiomycota/genetics , Genes, Fungal/genetics , Basidiomycota/enzymology , Basidiomycota/metabolism , Metabolic Networks and Pathways/genetics
SELECTION OF CITATIONS
SEARCH DETAIL