Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
EBioMedicine ; 76: 103837, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35134647

ABSTRACT

BACKGROUND: Tau in Alzheimer's disease (AD) is assessed via cerebrospinal fluid (CSF) and Positron emission tomography (PET). Novel methods to detect phosphorylated tau (pTau) in blood have been recently developed. We aim to investigate agreement of tau status as determined by [18F]MK6240 tau-PET, plasma pTau181 and pTau231. METHODS: We assessed cognitively unimpaired young, cognitively unimpaired, mild cognitive impairment and AD individuals with [18F]MK6240, plasma pTau181, pTau 231, [18F]AZD4694 amyloid-PET and MRI. A subset underwent CSF assessment. We conducted ROC curves to obtain cut-off values for plasma pTau epitopes. Individuals were categorized as positive or negative in all biomarkers. We then compared the distribution among concordant and discordant groups in relation to diagnosis, Aß status, APOEε4 status, [18F]AZD4694 global SUVR, hippocampal volume and CSF pTau181. FINDINGS: The threshold for positivity was 15.085 pg/mL for plasma pTau181 and 17.652 pg/mL for plasma pTau231. Most individuals had concordant statuses, however, 18% of plasma181/PET, 26% of plasma231/PET and 25% of the pTau231/pTau181 were discordant. Positivity to at least one biomarker was often accompanied by diagnosis of cognitive impairment, Aß positivity, APOEε4 carriership, higher levels of [18F]AZD4694 global SUVR, hippocampal atrophy and CSF pTau181. INTERPRETATION: Plasma pTau181, pTau231 and [18F]MK6240 seem to reflect different stages of tau progression. Plasma biomarkers can be useful in the context of diagnostic information and clinical trials, to evaluate the disease stage. Moreover, they seem to confidently evaluate tau-PET positivity. FUNDING: Moreover, this study was supported by Weston Brain Institute, Canadian Institute of Health Research and Fonds de Recherche du Québec.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Alzheimer Disease/diagnostic imaging , Amyloid beta-Peptides , Biomarkers , Canada , Cognitive Dysfunction/diagnosis , Humans , Positron-Emission Tomography/methods , tau Proteins
2.
Alzheimers Dement (N Y) ; 7(1): e12154, 2021.
Article in English | MEDLINE | ID: mdl-33816761

ABSTRACT

BACKGROUND: Neuropsychiatric symptoms (NPS) are frequent in aging and Alzheimer's disease (AD). Here we study the relationship between NPS and AD pathologies in vivo. METHOD: Two hundred and twenty-one individuals from the TRIAD cohort (143 cognitively unimpaired, 52 mild cognitive impairment, and 26 AD) underwent [18F]MK6240-tau-positron emission tomography (PET), [18F]AZD4694-amyloid-PET, magnetic resonance imaging, and neuropsychological evaluations. Spearman correlations and voxel-based regression models evaluated the relationship between Neuropsychiatric Inventory Questionnaire (NPI-Q) scores, and tau-PET, amyloid-PET, and voxel-based morphometry. RESULTS: Fifty percent of individuals presented NPS; these correlated with tau, not amyloid beta or neurodegeneration. Associations between NPI-Q score and tau-PET were stronger in the parietal association area, superior frontal, temporal, and medial occipital lobes. NPI-Q domains associated with distinct patterns of tau uptake. CONCLUSIONS: NPS are predominantly related to tau in aging and dementia. Regions affected are part of the behavioral circuits, and vulnerable to early AD pathology. Domain-specific analyses showed NPS are related to the AD pathophysiological processes in a symptom-specific manner.

3.
Alzheimers Res Ther ; 13(1): 69, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33781319

ABSTRACT

BACKGROUND: To investigate the association of plasma pTau181, assessed with a new immunoassay, with neurodegeneration of white matter and gray matter cross-sectionally and longitudinally, in aging and Alzheimer's disease. METHODS: Observational data was obtained from the Alzheimer's Disease Neuroimaging Initiative, in which participants underwent plasma assessment and magnetic resonance imaging. Based on their clinical diagnosis, participants were classified as cognitively unimpaired and cognitively impaired. Linear regressions and linear mixed-effect models were used to test the cross-sectional and longitudinal associations between baseline plasma pTau181 and neurodegeneration using voxel-based morphometry. RESULTS: We observed a negative correlation at baseline between plasma pTau181 and gray matter volume in cognitively unimpaired individuals. In cognitively impaired individuals, we observed a negative association between plasma pTau181 and both gray and white matter volume. In longitudinal analyses conducted in the cognitively unimpaired group, plasma pTau181 was negatively correlated with gray matter volume, starting 36 months after baseline assessments. Finally, in cognitively impaired individuals, plasma pTau181 concentrations were negatively correlated with both gray and white matter volume as early as 12 months after baseline, and neurodegeneration increased in an incremental manner until 48 months. CONCLUSIONS: Higher levels of plasma pTau181 correlate with neurodegeneration and predict further brain atrophy in aging and Alzheimer's disease. Plasma pTau181 may be useful in predicting AD-related neurodegeneration, comparable to positron emission tomography or cerebrospinal fluid assessment with high specificity for AD neurodegeneration.


Subject(s)
Alzheimer Disease , Aging , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Atrophy/pathology , Brain/diagnostic imaging , Brain/pathology , Cross-Sectional Studies , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography
SELECTION OF CITATIONS
SEARCH DETAIL
...