Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Cell ; 12(4): 1009-17, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11294903

ABSTRACT

Previous studies of mRNA for classical glutathione peroxidase 1 (GPx1) demonstrated that hepatocytes of rats fed a selenium-deficient diet have less cytoplasmic GPx1 mRNA than hepatocytes of rats fed a selenium-adequate diet. This is because GPx1 mRNA is degraded by the surveillance pathway called nonsense-mediated mRNA decay (NMD) when the selenocysteine codon is recognized as nonsense. Here, we examine the mechanism by which the abundance of phospholipid hydroperoxide glutathione peroxidase (PHGPx) mRNA, another selenocysteine-encoding mRNA, fails to decrease in the hepatocytes and testicular cells of rats fed a selenium-deficient diet. We demonstrate with cultured NIH3T3 fibroblasts or H35 hepatocytes transiently transfected with PHGPx gene variants under selenium-supplemented or selenium-deficient conditions that PHGPx mRNA is, in fact, a substrate for NMD when the selenocysteine codon is recognized as nonsense. We also demonstrate that the endogenous PHGPx mRNA of untransfected H35 cells is subject to NMD. The failure of previous reports to detect the NMD of PHGPx mRNA in cultured cells is likely attributable to the expression of PHGPx cDNA rather than the PHGPx gene. We conclude that 1) the sequence of the PHGPx gene is adequate to support the NMD of product mRNA, and 2) there is a mechanism in liver and testis but not cultured fibroblasts and hepatocytes that precludes or masks the NMD of PHGPx mRNA.


Subject(s)
Codon, Nonsense , Glutathione Peroxidase/genetics , Proteins/genetics , RNA, Messenger/metabolism , Selenocysteine/genetics , 3T3 Cells , Animals , Cells, Cultured , Codon , Liver/metabolism , Male , Mice , Peptides/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase , Rats , Rats, Long-Evans , Selenium/metabolism , Selenium/physiology , Selenoproteins , Testis/metabolism
2.
Mol Cell Biol ; 18(9): 5272-83, 1998 Sep.
Article in English | MEDLINE | ID: mdl-9710612

ABSTRACT

Mammalian cells have established mechanisms to reduce the abundance of mRNAs that harbor a nonsense codon and prematurely terminate translation. In the case of the human triosephosphate isomerase (TPI gene), nonsense codons located less than 50 to 55 bp upstream of intron 6, the 3'-most intron, fail to mediate mRNA decay. With the aim of understanding the feature(s) of TPI intron 6 that confer function in positioning the boundary between nonsense codons that do and do not mediate decay, the effects of deleting or duplicating introns have been assessed. The results demonstrate that TPI intron 6 functions to position the boundary because it is the 3'-most intron. Since decay takes place after pre-mRNA splicing, it is conceivable that removal of the 3'-most intron from pre-mRNA "marks" the 3'-most exon-exon junction of product mRNA so that only nonsense codons located more than 50 to 55 nucleotides upstream of the "mark" mediate mRNA decay. Decay may be elicited by the failure of translating ribosomes to translate sufficiently close to the mark or, more likely, the scanning or looping out of some component(s) of the translation termination complex to the mark. In support of scanning, a nonsense codon does not elicit decay if some of the introns that normally reside downstream of the nonsense codon are deleted so the nonsense codon is located (i) too far away from a downstream intron, suggesting that all exon-exon junctions may be marked, and (ii) too far away from a downstream failsafe sequence that appears to function on behalf of intron 6, i.e., when intron 6 fails to leave a mark. Notably, the proposed scanning complex may have a greater unwinding capability than the complex that scans for a translation initiation codon since a hairpin structure strong enough to block translation initiation when inserted into the 5' untranslated region does not block nonsense-mediated decay when inserted into exon 6 between a nonsense codon residing in exon 6 and intron 6.


Subject(s)
Introns , Protein Biosynthesis , RNA Splicing , RNA, Messenger/metabolism , Triose-Phosphate Isomerase/biosynthesis , Base Sequence , Cell Nucleus/metabolism , Cloning, Molecular , Codon , Cytoplasm/metabolism , DNA/chemistry , DNA/metabolism , Exons , Gene Expression Regulation, Enzymologic , Humans , Models, Genetic , Nucleic Acid Conformation , Peptide Chain Termination, Translational , Recombinant Proteins/biosynthesis , Sequence Deletion
SELECTION OF CITATIONS
SEARCH DETAIL