Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Front Cell Infect Microbiol ; 14: 1367016, 2024.
Article En | MEDLINE | ID: mdl-38681224

Introduction: Staphylococcus aureus, is a pathogen commonly encountered in both community and hospital settings. Patients receiving hemodialysis treatment face an elevated risk of vascular access infections (VAIs) particularly Staphylococcus aureus, infection. This heightened risk is attributed to the characteristics of Staphylococcus aureus, , enabling it to adhere to suitable surfaces and form biofilms, thereby rendering it resistant to external interventions and complicating treatment efforts. Methods: Therefore this study utilized PCR and microtiter dish biofilm formation assay to determine the difference in the virulence genes and biofilm formation among in our study collected of 103 Staphylococcus aureus, isolates from hemodialysis patients utilizing arteriovenous grafts (AVGs), tunneled cuffed catheters (TCCs), and arteriovenous fistulas (AVFs) during November 2013 to December 2021. Results: Our findings revealed that both MRSA and MSSA isolates exhibited strong biofilm production capabilities. Additionally, we confirmed the presence of agr types and virulence genes through PCR analysis. The majority of the collected isolates were identified as agr type I. However, agr type II isolates displayed a higher average number of virulence genes, with MRSA isolates exhibiting a variety of virulence genes. Notably, combinations of biofilm-associated genes, such as eno-clfA-clfB-fib-icaA-icaD and eno-clfA-clfB-fib-fnbB-icaA-icaD, were prevalent among Staphylococcus aureus, isolates obtained from vascular access infections. Discussion: These insights contribute to a better understanding of the molecular characteristics associated with Staphylococcus aureus, infections in hemodialysis patients and provided more targeted and effective treatment approaches.


Bacterial Proteins , Biofilms , Renal Dialysis , Staphylococcal Infections , Staphylococcus aureus , Trans-Activators , Virulence Factors , Female , Humans , Male , Middle Aged , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Catheter-Related Infections/microbiology , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Renal Dialysis/adverse effects , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Trans-Activators/genetics , Virulence Factors/genetics
2.
Antibiotics (Basel) ; 12(6)2023 Jun 18.
Article En | MEDLINE | ID: mdl-37370389

Patients receiving hemodialysis are at risk of vascular access infections (VAIs) and are particularly vulnerable to the opportunistic pathogen Staphylococcus aureus. Hemodialysis patients were also at increased risk of infection during the COVID-19 pandemic. Therefore, this study determined the change in the molecular and antibiotic resistance profiles of S. aureus isolates from VAIs during the pandemic compared with before. A total of 102 S. aureus isolates were collected from VAIs between November 2013 and December 2021. Before the pandemic, 69 isolates were collected, 58%, 39.1%, and 2.9% from arteriovenous grafts (AVGs), tunneled cuffed catheters (TCCs), and arteriovenous fistulas (AVFs), respectively. The prevalence of AVG and TCC isolates changed to 39.4% and 60.6%, respectively, of the 33 isolates during the pandemic. Sequence type (ST)59 was the predominant clone in TCC methicillin-resistant S. aureus (MRSA) and AVG-MRSA before the pandemic, whereas the predominant clone was ST8 in AVG-MRSA during the pandemic. ST59 carrying the ermB gene was resistant to clindamycin and erythromycin. By contrast, ST8 carrying the msrA gene was exclusively resistant to erythromycin. The ST distribution for different VAIs changed from before to during the pandemic. The change in antibiotic resistance rate for different VAIs was closely related to the distribution of specific STs.

...